Medical instrument guidance using stereo radiolocation

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06678546

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to medical instrument guidance for minimally invasive medical procedures and, in particular, to three-dimensional guidance using stereo radiolocation and related imaging for penetration path selection. The present invention has particular advantages with respect to sentinel node biopsy procedures.
BACKGROUND OF THE INVENTION
The use of radioactively tagged materials for medical imaging, tissue identification and certain localization procedures is well-established. One such application relates to identification of a sentinel node in connection with the staging and treatment of breast cancer. Determining whether cancer has spread from a mass within the breast to the lymph nodes, generally located near the patient's armpit, is important in selecting a course of treatment and establishing a definitive prognosis. In this regard, a radioactively tagged material or radiopharmaceutical may be utilized to assist in locating the sentinel node.
Generally, the radiopharmaceutical is injected near the site of a cancerous mass within the patient's breast and then drains to the sentinel node. The injection may alternatively be made subdermally or periareolarly. A photon detector such as a hand-held probe can then be used to locate the sentinel node by manually moving the probe over the armpit area while monitoring detector readings to identify a radiation peak. Such probes have been used to guide surgeons to the site of the sentinel node and it has further been proposed to use such probes in connection with certain medical instruments for minimally invasive sentinel node extraction.
While such procedures or proposals represent a significant advance in the diagnosis and treatment of breast cancer, a number of challenges remain with respect to full realization of the associated potential benefits. First, given the gravity of the medical context, accurate identification and localization of the sentinel node is essential to provide physicians with the confidence necessary to rely on such procedures in making diagnoses and establishing courses of treatment. However, because the detector is hand-held, the photon detector may have limited accuracy in localizing the node. In addition, there is no ability to correlate, to the required accuracy, the probe location to the location of any separate instrument used for extraction. Moreover, minimally invasive procedures are hampered by a concern for damaging nerves or other sensitive tissue that is present in the vicinity of the sentinel node during penetration of the medical instrument into the axilla. Accordingly, surgical node removal remains the standard, in part because open surgical removal allows the surgeon to avoid damage to such sensitive tissues.
SUMMARY OF THE INVENTION
The present invention is directed to three-dimensional localization of an area of interest within a patient's body for instrument guidance based on photon/radiation emissions. The invention thus allows for accurate determination of the spatial coordinates of the area of interest identified based on emissions therefrom, for example, as a result of using a radioactive material or radiopharmaceutical. Such coordinates can be used in accordance with the present invention to guide a medical instrument to the identified location, for example, for treatment, sampling or extraction. The invention also provides for spatially correlated imaging to facilitate penetrate path selection. Moreover, the invention enables flexible positioning of one or more photon detectors, imaging probes, and medical instruments while maintaining identifiable positions relative to a known frame of reference so as to facilitate localization and targeting of difficult to access areas of interest, as well as penetration path selection.
In accordance with one aspect of the present invention, the spatial location of an area of interest within a patient's body is identified relative to a predetermined frame of reference by radiolocalization. An associated apparatus includes: a patient support for supporting the patient in a substantially fixed position relative to a predetermined frame of reference; a photon detector system for receiving photon emissions from an area of interest within the patient's body and providing location information based on the emissions; and a processor for identifying the three-dimensional spatial location of the area of interest relative to the predetermined frame of reference based on the location information from the photon detector system.
It will be appreciated that identifying the location of the area of interest relative to a predetermined reference or concurrent frame facilitates subsequent or concurrent medical instrument targeting, imaging or other procedures. In one embodiment, a multiple pin hole collimator is used in conjunction with a single gamma camera to generate the location information so as to provide three-dimensional data. Alternatively, two or more detectors may be used for stereo radiolocation based on gamma radiation, visible light, near infrared or infrared photon emissions. In the latter case, the photon detector system may include a first photon detector, mounted in known spatial relationship and moveable with respect to the predetermined frame of reference, for providing first information regarding the position of an area of interest within the patient's body based on photons emitted from the area of interest; and a second photon detector, mounted in known spatial relation and movable with respect to the predetermined frame of reference, for providing second information regarding the position of the area of interest within the patient's body based on photons emitted from the area of interest. In this latter case, it will be appreciated that each of the photon detectors can provide directional information regarding the area of interest based on radiation propagating from the area of interest. Thus, in this case, by using two photon detectors that provide spatially correlated information, three-dimensional coordinates can be determined regarding the location of interest thereby facilitating localization, e.g., for instrument guidance.
In accordance with another aspect of the present invention, a medical instrument is guided to an area of interest within the patient's body based on radiolocation. An associated apparatus comprises: a patient support for supporting a patient in a substantially fixed position relative to a predetermined frame of reference; at least one photon detector, mounted in known spatial relation and movable relative to said predetermined frame of reference, for providing position information regarding the area of interest based on photons emitted therefrom; a medical instrument support, located in predetermined spatial relation and movable and relative to said predetermined frame of reference, for use in targeting a medical instrument at the area of interest; and a processor for receiving first information regarding the location of the area of interest, receiving second information regarding a position of the medical instrument and providing guidance information for use in targeting the medical instrument at the area of interest. By mounting the medical instrument support and the photon detector(s) in a spatially correlated manner relative to the patient support, radiolocalization information can be used for targeting a medical instrument to a location of interest within the patient's body.
According to a still further aspect of the present invention, a substantially real-time imaging system is used in connection with a radiolocalization device for selection of a penetration path for targeting an area of interest with a patient's body. The radiolocalization device is utilized to determine the spatial location of the area of interest with the patient's body relative to a predetermined frame of reference. The real-time imaging system includes an imaging element that is mounted in known spatial relation and movable relative to t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Medical instrument guidance using stereo radiolocation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Medical instrument guidance using stereo radiolocation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical instrument guidance using stereo radiolocation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3209677

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.