Image analysis – Image enhancement or restoration – Object boundary expansion or contraction
Reexamination Certificate
1996-09-19
2001-01-16
Tran, Phuoc (Department: 2721)
Image analysis
Image enhancement or restoration
Object boundary expansion or contraction
C382S256000, C382S259000, C382S308000, C358S451000
Reexamination Certificate
active
06175655
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to medical imaging systems and digital signal processing. It relates more particularly to a method of inputting medical data into a computer, allowing the end user to efficiently visualize and manipulate the data, and processing the data according to the user instructions. The processing of the data includes the use of data-dimensional sieving and fuzzy connectivity to facilitate analysis and review of three-dimensional medical images such as those produced by magnetic resonance imaging (MRI) devices and the like.
MICROFICHE APPENDIX
A microfiche appendix containing computer source code is attached. The microfiche appendix comprises six (6) sheets of microfiche having 546 frames, including one title frame.
The program contained in the microfiche appendix can be utilized in the practice of the present invention upon Unix equipment and Pixar computers. FIGS.
2
A-
2
C illustrate the basic hardware and software components necessary to execute the program.
The microfiche appendix contains material which is subject to copyright protection. The copyright owner has no objection to the reproduction of such material, as it appears in the files of the Patent and Trademark Office, but otherwise reserves all copyright rights whatsoever.
BACKGROUND OF THE INVENTION
Various methods exist for viewing and manipulating data to create a three-dimensional image. As those skilled in the art will appreciate, such three-dimensional images provide a valuable tool to the medical professional in a manner which is non-invasive, and which is therefore considered to be of very low risk to the patient.
Tomographic imaging techniques for use in medical applications are well known. Examples of such techniques include magnetic resonance imaging (MRI), computer aided tomography (CAT), and positron emission tomography (PET). In each of these techniques, a multi-dimensional array of volume information or a plurality of cross-sectional, two-dimensional images, i.e., slices, of a body portion are generated and processed so as to provide a three-dimensional model of the imaged body portion.
Although such three-dimensional imaging techniques have proven extremely useful for their intended purposes, they still possess inherent deficiencies which detract from their overall effectiveness. Current methods attempt to project the generated three-dimensional image directly onto a screen and thus do not allow the end user to view the three-dimensional figure from arbitrary angles or manipulate the transparency of various objects to allow underlying objects to be easily viewed. In addition, current systems do not allow the end user to easily manipulate the images.
Another problem with current methods is that it is frequently difficult to interpret the viewed two-dimensional slices or images when the anatomical structures of interest are surrounded by and/or intermixed with various other anatomical structures. The undesirable presence of such superfluous imagery only complicates the image, making it much more difficult to view and interpret the desired imagery.
For example, viewing the delicate portions of the vascular system is typically difficult since veins, arteries, and capillaries are intermixed with surrounding tissue. This makes it very difficult to distinguish the desired portions of the vascular system from surrounding tissue. Often, only slight changes in the intensity of the image distinguish a desired anatomical structure from surrounding tissue.
SUMMARY OF THE INVENTION
It is thus desirable to provide a method for isolating anatomical structures of interest such that surrounding tissue is not displayed along therewith. In this manner, the medical professional may view only the unobstructed anatomical structures of interest. This vastly reduces the complexity of the image and thus minimizes confusion as to precisely what portions of the image relate to the anatomical structure of interest.
Once the isolation has been achieved, it is also desirable to have an imaging system which allows an end user to easily manipulate objects by morphology and rearrange objects.
The embodiment of the present invention described in this application relates generally to a system for displaying, manipulating and analyzing three-dimensional medical images. However, the imaging system may also be used in many other fields, such as geological studies, entertainment, and aerospace. For example, the same technology which enables the imaging of organs within the body and morphologically removing organs for expanded observation would be useful in examining objects within the earth in search of oil or mineral deposits. The same technology could also be used for special effects in the entertainment industry. In this disclosure, the present invention is described primarily in connection with medical applications.
The current invention relates to a method of inputting a multi-dimensional array of volume data, or of inputting a series of two-dimensional medical images into a computer such that the end user can easily visualize the images in three dimensions and manipulate those images. The images, or portions of the image, can then be removed morphologically for application of diagnostic and therapeutic techniques.
Prior methods of data separation in the field of medical imaging used an amalgamation of algorithms. The present invention provides a consistent method of manipulating images using grayscale morphology and related fuzzy inreasoning. The invention uses grayscale and a structuring element size and shape to define fuzzy connectivity in the image in three dimensions. Thus, therapeutic and diagnostic applications can be accomplished, and new visualization and analysis capabilities such as extracting an image of the brain from surrounding elements are provided.
The data is input into the computer from a variety of sources. These sources include MRI, scanners, and digitized film samples. The data may be transferred to the computer using communications hookups that rely on standard transport carrier protocols, including an internet protocol. The transfer of the images over standard lines allows for remote users to access the data and greatly facilitates teleconferencing and information transfer.
The medical imaging system of the present invention generates a three-dimensional model of a body portion from either a multi-dimensional array of volume data or from a series of slices or images taken along particular planes of interest. These slices, or two-dimensional images, may be the result of MRI scans, PET scans or other medical imaging technology.
An end user chooses to view various cross-sections of the image from different angles of the three-dimensional model. The angle at which the end user views a cross-section does not necessarily correspond to the angle used to take the original image slices that are used to compose the three-dimensional model. Thus, the medical professional may review images taken along any desired plane within the three-dimensional model.
The present invention allows the medical professional to simulate treatment or provide “radiation therapy” on the three-dimensional images. The end user may choose to view the three-dimensional image under different light sources, or even expose portions of the three-dimensional model to beams of computer simulated radiation. The ability to simulate exposure to radiation and to take different views of the three-dimensional model under different lighting conditions and at arbitrary angles provides the medical specialist with a great deal of flexibility in viewing the three-dimensional image generated from a series of two-dimensional slices.
A further advantage of the invention is that it allows the end user to view only a chosen critical feature of an image. In the analysis and review of three-dimensional medical imaging, it is of critical importance to be able to measure and analyze image features having various fractal dimensionalities from zero dimensions to three dimensions. For example, veins and arteries are char
George, III Frederick W.
Kraske Wolfgang F.
Integrated Medical Systems, Inc.
Mariam Daniel G.
Stetina Brunda Garred & Brucker
Tran Phuoc
LandOfFree
Medical imaging system for displaying, manipulating and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Medical imaging system for displaying, manipulating and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical imaging system for displaying, manipulating and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2435545