Medical grafting methods and apparatus

Surgery – Miscellaneous – Methods

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S153000, C606S151000, C606S194000, C604S158000, C623S001230, C623S001360, C623S017120

Reexamination Certificate

active

06508252

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to medical grafting methods and apparatus, and more particularly to methods and apparatus for installing tubular bypass grafts primarily with intraluminal methods with the assistance of surgical and minimally invasive methods and apparatus.
A conventional bypass grafting technique is illustrated at
FIG. 1
, which shows a patient's aorta
10
with a coronary artery
12
branching off the aorta. A narrowing
14
in coronary artery
12
is restricting blood flow from aorta
10
to downstream portions of the coronary artery, thereby preventing the patient's heart from receiving all the blood it needs for normal operation. In more serious conditions, the coronary artery may be entirely occluded. To remedy this condition, a bypass graft around narrowing
14
is needed, and one way to provide such a bypass is to add a graft conduit
15
from aorta
10
(e.g., at location
16
) to a downstream portion of coronary artery
12
(e.g., at location
18
). Sutures
20
are typically applied to “proximal” anastomosis location
16
, i.e., at the joining of a graft conduit
15
with the side wall of the aorta
10
and “distal” anastomosis site
18
, i.e., at the joining of the graft conduit
15
with the side wall of the coronary artery
12
. Failure of the bypass circuit often occurs at the anastomosis sites due to injury or to poor fluid dynamics. Such tissue stress may trigger a healing response that ultimately reduces the patency of the graft.
Conventional suturing techniques may contribute to the failure of the distal anastomosis. The sutures
20
themselves may initiate injury to the graft vessel at coronary anastomosis site, which is already in high stress. When veins, such as the saphenous vein, are used for graft material, the high arterial pressure may dilate the vein to a larger diameter than it would experience under typical venous pressure. At the anastomosis site, the combination of the sutures and the arterial pressure amplifies the stress on the tissue, resulting in tissue injury and reduced patency.
Typical conventional techniques nevertheless require that the patient's heart be stopped and the patient be placed on cardiopulmonary bypass (CPB) to oxygenate and circulate the blood during the procedure. Stopping of the heart and CPB is typically required to allow effective suturing of the anastomosis. Suturing also requires blood flow to be stopped for optimal anastomosis. As a result, the patient is placed on CPB to provide a bloodless field and a still heart for the surgeon to attach the graft vessels. However, it is known that CPB can be very time consuming, costly and dangerous to the patient. Complications may include emboli, blood degradation, and damage to tissue from the use of cannulas. Alternatives to CPB may include the cross-clamping of arteries, which may damage the vessels or dislodge deposits such as atherosclerotic plaque from the lining of the vessel walls.
Goldsteen et al. U.S. patent application Ser. No. 08/745,618, filed Nov. 7, 1996, shows, among other things, methods and apparatus for installing tubular bypass grafts intraluminally. (The Goldsteen et al. reference is hereby incorporated by reference herein in its entirety.) The Goldsteen et al. reference shows methods and apparatus in which each end of the graft site is approached separately and intraluminally, penetrated, and then a longitudinal structure (e.g., element
150
in the Goldsteen et al. reference) is established between the ends of the graft site. This longitudinal structure may extend intraluminally all the way out of the patient's body from both ends of the graft site. The graft is fed into the patient's body intraluminally along the longitudinal structure until it is in the desired position extending from one end of the graft site to the other. Each end of the graft is then secured by anastomosis at the respective end of the graft site and the longitudinal structure is withdrawn from the patient.
In some cases, it may not be necessary or desirable to separately approach both ends of the graft site. Sullivan et al. U.S. patent application Ser. No. 08/844,992, filed Apr. 23, 1997, shows, among other things, methods and apparatus for allowing a longitudinal structure to be extended intraluminally to one end of a graft site. (The Sullivan et al. reference is hereby incorporated by reference herein in its entirety.) At that end of the graft site the longitudinal structure passes out of the body structure lumen and extends extraluminally to the other end of the graft site. At the other end of the graft site, the longitudinal structure re-enters the body structure lumen. The graft is introduced intraluminally along the longitudinal structure until it passes out of the body structure lumen at the first end of the graft site and extends to the second end of the graft site. Both ends of the graft are then secured by anastomosis at the respective opposite ends of the graft site, and the longitudinal structure is axially withdrawn from the patient.
Under some circumstances, it is preferable to dissect and relocate a vessel, such as an arterial blood source, in order to shift the vessel to the graft site. Sullivan et al. U.S. patent application Ser. No. 08/869,808, filed Jun. 5, 1997 shows methods and apparatus for shifting a vessel and performing an anastomosis intraluminally.
What is need are methods and apparatus that provide the limited trauma of intraluminal methods but which also provide greater access or visibility during certain steps in the bypass procedure.
It is therefore an object of this invention to provide improved methods and apparatus for intraluminal installation of alternative tubular connections, such as bypass grafts and connections.
It is a more particular object of this invention to provide methods and apparatus for intraluminally installing bypass grafts which use simplified intraluminal apparatus to make the graft connection with surgical assistance or surgical access.
It is another object of the invention to reduce the patient trauma and risk of emboli, cannulation, and cross-clamping.
It is another object of the invention to reduce the procedural time and cost for current procedures.
SUMMARY OF THE INVENTION
These and other objects of the invention are accomplished in accordance with the principles of the invention by providing methods and apparatus for installing a graft between first and second spaced locations on a tubular structure of a patient. Many steps in the procedure are performed intraluminally, that is, inserted into the patient's tubular body structure and advanced along the interior of the tubular body structure to the operative site. In addition, a surgical access opening may be provided to allow surgical assistance in completing one or more steps in the procedure.
An elongated structure may be passed into and along a lumen of the tubular body structure so that a distal portion of the elongated structure extends to the first location. A distal portion of the elongated structure is used to make a first aperture through the tubular body structure at the first location.
The surgical access opening may be provided in the patient adjacent the first and second locations. In a preferred embodiment of the subject invention, surgical instrumentation is inserted in the surgical access opening to provide assistance. For example, the surgical instrumentation may be used to move an elongated member from the first location to the second location.
In another preferred embodiment, surgical instrumentation inserted through the surgical access opening is used to complete a connection between the graft and the tubular body conduit. If the graft is passed intraluminally, e.g., through the elongated structure, the surgical instrumentation may be used to move an end portion of the graft from one location to the other location. Alternatively, the graft may be inserted to the operative site through the surgical access opening and its end portions moved to the first and second locations.
In yet another pr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Medical grafting methods and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Medical grafting methods and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical grafting methods and apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3024161

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.