Education and demonstration – Anatomy – physiology – therapeutic treatment – or surgery... – Anatomical representation
Reexamination Certificate
2000-08-29
2002-08-06
Martin-Wallace, Valencia (Department: 3713)
Education and demonstration
Anatomy, physiology, therapeutic treatment, or surgery...
Anatomical representation
C434S262000
Reexamination Certificate
active
06428323
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to a system for teaching students and health care professionals to perform medical examinations. More particularly, it relates to a system for teaching medical examinations performed manually inside a body cavity or anatomical space.
BACKGROUND ART
One of the most difficult examinations that students learn to perform in the first years of medical school is the female pelvic examination. The exam is generally taught through textbook reading, lectures, and observation of experienced physicians performing the exam. While these techniques contribute to the student's overall knowledge, they do not provide the hands-on learning essential for development of proper technique.
Both live patients and manikins can provide the necessary hands-on learning. Live patients willing to be practiced on by inexperienced students, however, are in short supply. When available, this self-selected group does not necessarily provide a good baseline for teaching exams on healthy patients. Low-income women without access to regular medical care are often motivated to volunteer by financial incentive or incipient health problems. Other volunteers, including paid models, feel a duty to teach the students proper technique and can be quite assertive, further diminishing the student's already fragile confidence in his or her examination procedure. The use of paid models can also be very expensive, and not all medical schools can afford this luxury. Another problem is the limited amount of time that the paid models are available.
To eliminate these potentially stressful problems and limitations, manufacturers have developed anatomical simulators or manikins to provide uniform environments in which the student can practice the exam as frequently as desired. One such gynecological simulator, known as ZOE™, is disclosed in U.S. Pat. No. 5,472,345 to Eggert. While ZOE™ is an excellent model of a human female pelvis, it presents a few problems for the instructor. The hands of the person performing the exam on the simulator are not visible to an observer; a student watching an instructor does not obtain a clear picture of basic internal exam technique, nor is an instructor able to accurately judge a student's performance. Even with a cut-away or transparent region or suitable internal lighting, the simulator cannot significantly overcome the problem of limited visibility. Without detailed feedback, the student may not learn the essential elements of the exam or may develop improper technique. Unfortunately, the prevailing attitude in medical schools is that this type of manual exam is eventually learned through experience, and educators tend to tolerate the above problems.
In the last few decades, educators in many fields have used new technology to better implement proven educational methods. Medicine has, in general, been slow to implement new educational practices or technologies.
One area which has incorporated computerized techniques to improve the training process is life support. Systems have been developed for teaching medical procedures to students using manikins or other simulators containing sensors interfaced with computers containing teaching modules. U.S. Pat. Nos. 4,360,345 to Hon and 5,853,292 to Eggert et al. disclose two such systems for teaching cardiopulmonary resuscitation (CPR) and other basic physiological procedures. One important goal of these systems is to eliminate the need for instructors, thereby increasing the availability and decreasing the cost of training. In addition, these systems aim to provide realistic models for human patients and for expensive equipment. In general, they provide feedback similar to what can be provided by an instructor, experienced practitioner, or standard manikins and instruments. For all of the techniques taught, such as manual chest compressions, an instructor has access to the student's hands, and can therefore provide the same feedback as the sensors. Specifically, the systems do not provide information on exams performed manually inside body cavities, for which there is currently no means for assessing exam performance.
Systems are also available for simulating minimally invasive surgical procedures. In this field, as opposed to classical surgery with its large incisions, full anesthesia, and long hospitalizations, an instrument is inserted into a small incision made in the patient. A surgeon conducts a procedure using tactile feedback imparted through the instrument combined with real-time visual display images of the patient's internal landscape. Teaching systems for these surgical techniques focus on a virtual instrument interfaced with a computer system containing real image data. Some examples are disclosed in U.S. Pat. Nos. 4,907,973, issued to Hon, 5,800,179, issued to Bailey, and 5,800,177, 5,800,178, and 5,822,206, all issued to Gillio. The virtual instrument is inserted into an orifice, and movement of the instrument produces an image and other feedback on a display monitor. By varying the image data, many different types of operations can be practiced. These systems are highly specialized to minimally invasive surgery. Anatomical accuracy is provided by the image data, not by the orifice or access sites, and they are not applicable for teaching manually performed exams or palpation techniques.
There is a need, therefore, for a system for training students to perform pelvic and other internal exams, of which a key measure of success is the tactile contact provided by the student.
OBJECTS AND ADVANTAGES
Accordingly, it is a primary object of the present invention to provide a training system that provides immediate feedback to students performing a medical exam manually inside a body cavity, for example, a pelvic or rectal exam. The system provides feedback that an instructor alone cannot give.
It is a further object of the invention to provide a teaching system that measures a student's performance against an objective standard and provides a rating of the student's performance.
It is an additional object of the invention to provide a system that simulates various environments in which an exam occurs, including an examination room or emergency room, and various types of patients, including a wide range of clinical conditions and demographics.
It is another object of the present invention to provide a system that interfaces with different feedback presentation units, some of which make the unit portable.
It is a further object of the present invention to provide a system that can be used for any type of medical examination performed manually within an anatomical space that is hidden from view.
Finally, it is an object of the present invention to provide a system that is economical to construct and easy to transport.
SUMMARY
These objects and advantages are attained by a system for training a student to perform a medical exam performed manually inside a body cavity, part of whose inside surface is not visible to the student. An instructor cannot see what the student's hands are doing inside the body cavity, and so the system provides feedback that allows both the student and instructor to immediately judge the student's proficiency in performing the exam. The system has three main parts: an anatomical simulator with a simulator cavity, a tactile sensor in the anatomical simulator, and a feedback presentation unit in communication with the sensor. When manual contact is made with an inside surface of the simulator cavity, the sensor generates a signal in response. Performance of the exam inside the simulator cavity generates a set of signals from the sensor, which are used by the feedback presentation unit to provide feedback for the exam.
Any exams requiring palpation or manual assessment inside body cavities can be taught, such as pelvic exams, rectal exams, or surgical procedures including abdominal, pelvic, and thoracic (chest) surgery. The simulator and feedback are correlated with the exam; for example, the simulator is a manikin of the lo
Christman Kathleen M.
Lumen Intellectual Property Services
Martin-Wallace Valencia
LandOfFree
Medical examination teaching system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Medical examination teaching system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical examination teaching system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2887242