Surgery – Diagnostic testing – Via monitoring a plurality of physiological data – e.g.,...
Reexamination Certificate
1999-09-03
2002-12-17
Schaetzle, Kennedy (Department: 3762)
Surgery
Diagnostic testing
Via monitoring a plurality of physiological data, e.g.,...
C607S060000, C128S904000, C128S903000, C340S003510
Reexamination Certificate
active
06494831
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to systems and techniques for providing remote service to medical diagnostic equipment and facilities. More particularly, the invention relates to a technique for verifying continued connectivity between a remote service facility and a subscribing medical diagnostic facility or system.
BACKGROUND OF THE INVENTION
In recent years, considerable advances have been made in medical diagnostic equipment and systems, particularly imaging systems. Such imaging systems encompass a range of modalities, each characterized by the physics involved in acquiring and processing image data. At present, medical diagnostic imaging modalities include magnetic resonance imaging (MRI) systems, x-ray systems, both digital and conventional film-based, computed tomography (CT) systems, ultrasound systems, positron emission tomography (PET) systems, and so forth. Medical facilities, hospitals and clinics make use of a wide range of such equipment, including more than one of the modalities, and in certain cases, more than one system within each modality. In larger facilities, these systems may be networked in a radiology department to permit common management or control. Such systems are increasingly associated with picture archiving and communications systems (PACS) for storing digitized image data for subsequent retrieval and reconstruction of useful images. Moreover, teleradiology applications are on the rise, in which such digitized data may be transmitted to remote locations, such as for review and diagnosis by specialized physicians and radiologists.
Regardless of the particular modality, medical diagnostic systems are often a key element in the diagnosis and treatment of disease and ailments. While certain facilities may offer their services during specific periods during the day, others require continued access to the diagnostic equipment in very demanding schedules. In both cases, the facility has a critical interest in maintaining the diagnostic equipment in good operational condition. However, due to the complexity of the systems, personnel required to review and evaluate potential problems as they arise are not often present at the location where the systems are found. Consequently, remote servicing of medical diagnostic equipment has become an important tool in maintaining the systems.
Traditionally, remote servicing of medical diagnostic equipment was performed via telephone. Operations personnel would call a remote service facility to report malfunctions and to ask questions regarding the proper operation and settings for the equipment. Where such queries could not be sufficiently handled by telephone, a service engineer was dispatched to troubleshoot the system or to provide the needed assistance.
Improvements in computer networks have greatly facilitated the task of offering assistance to medical diagnostic equipment and facilities. In particular, rather than simply calling a remote service facility and either talking directly to a technician or engineer, or awaiting a return call from a service center, network technologies have facilitated proactive techniques wherein the service center may contact the medical diagnostic equipment or facility to check the status of subscribing equipment.
Further advancements have been proposed to providing remote service to medical diagnostic systems in an effort to provide the level of service on a continual and interactive basis needed by many facilities. In one system, a remote service facility can interactively receive messages via a network, and can respond automatically to the messages either in a single connection session or in a subsequent session. Data required to analyze the state of operation of the medical diagnostic equipment can be transferred during the initial or subsequent sessions. The technique greatly facilitates identification of system problems, allows questions to be posed to the subscribing service provider, facilitates transfer of updates and imaging protocols, and permits standard and customized reports to be transmitted to subscribing systems. The interactive aspect of the technique allows the medical diagnostic facility to remain current on services provided by the remote service facility and to communicate at will with the service facility.
While these advancements in the provision of remote services to medical diagnostic equipment have greatly enhanced the level of service and information exchange, they may be subject to difficulties, particularly those arising from unanticipated connectivity problems. In particular, exchange of service information and requests on an interactive basis assumes that the remote service facility can contact the subscribing systems at will, and, conversely, that the subscribing systems can freely contact the remote service provider. Where systems operate well and no service is needed, extended periods may transpire without a contact of the service facility. If the required connection between the diagnostic equipment and the service facility is inoperative, however, service requests may not be reliably submitted to the service facility, and information from the service facility to the diagnostic system may not arrive properly or in a timely manner. Operator intervention may sometimes detect such problems, but typically only after a needed response has not been received for some time. Such delays would advantageously be avoided to insure that service problems and questions can be addressed in a timely manner.
There is a need, therefore, for a technique adapted to monitor proper connectivity of medical diagnostic equipment and facilities with a remote service provider. There is, at present, a particular need for a system which can verify two-way connectivity in which a service facility can freely contact a subscribing diagnostic system, and a diagnostic system can contact the service facility.
SUMMARY OF THE INVENTION
The present invention provides a connectivity verification technique designed to respond to these needs. The technique may be employed with any of a variety of diagnostic equipment, including specific systems of various modalities and centralized management systems, such as those typically found in large radiology departments. Where the diagnostic system is connectable to a remote service facility, the technique pennits the service facility to verify that the connection can be established, both originating from the service facility and from the diagnostic equipment. Such connections may be made with specific systems, with management systems networked to the diagnostic systems at a specific facility, or both. Moreover, the connectivity verification may be timed or scheduled for automatic implementation, or could be performed manually. The system may be designed to provide at least some degree of diagnostic capabilities in which the type or location of connectivity problem is detected and recorded. Results of connectivity verifications can be stored and used to evaluate the operability of the overall system, and to improve the system where needed. Upon failure of the connectivity test, or when inconsistent or unreliable connectivity is identified, the system may permit notification via an operator, or via automated schemes, including electronic messaging, paging, and so forth. The system may be adapted both for stationary diagnostic systems, as well as for mobile systems. In the case of mobile systems, the system may be adapted to await contact of the service facility by the mobile equipment.
The technique is particularly well suited to interactive service systems in which a diagnostic facility may contact a remote service provider and a remote service provider may contact the diagnostic facility. In addition, the system is especially adaptable to service arrangements in which subscriptions or licenses are established between the service facility and the diagnostic equipment. Based upon such subscriptions, the service facility insures the connectivity between the diagnostic equipment and the service provider to allow the s
Fletcher Yoder & Van Someren
GE Medical Technology Services, Inc.
Schaetzle Kennedy
LandOfFree
Medical diagnostic system service connectivity method and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Medical diagnostic system service connectivity method and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical diagnostic system service connectivity method and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2991322