Surgery – Diagnostic testing – Detecting sound generated within body
Reexamination Certificate
2000-04-19
2002-06-25
Shaver, Kevin (Department: 3736)
Surgery
Diagnostic testing
Detecting sound generated within body
C600S484000, C600S587000
Reexamination Certificate
active
06409684
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to a medical diagnostic device. The invention also relates to an associated medical method.
The traditional practice of medicine entails a close observation and “hand-on” examination of a patient to gather information for performing a diagnosis of the patient's medical condition. The observation includes use of a stethoscope to listen to sounds produced by the internal tissues and organs of the patient. With a stethoscope, an experienced physician listening for sounds in the chest region can detect wheezing and whistling indicating a constriction or narrowing of the bronchial passages. No breath sound or a greatly diminished breathing sound may indicate the presence of a lung tumor. Alternatively, the absence of sound may be due to the filling of the aveoli from pneumonia. A popping sound may be caused by pneumothorax, air not being returned owing to a hole in the lung. In the abdomen, aneurysms and arteriosclerotic narrowing generate characteristic low-amplitude vibrations or pressure waves recognizable by an experienced ear. Abnormalities in heart valve function can be detected by a seasoned medical practitioner.
With the advent of advanced medical diagnostic devices such as CAT scanners, MRI machines, echocardiograms, and EKG equipment, the art of listening with a stethoscope and observing a patient has largely disappeared. Many new doctors are unable to diagnose without expensive test results. Moreover, complex modem testing generally delays the diagnosis of a patient's condition.
OBJECTS OF THE INVENTION
An object of the present invention is to provide a medical diagnostic apparatus and/or an associated medical methodology.
It is another object of the present invention to provide a medical diagnostic apparatus and/or an associated method which facilitates the collection of information of a kind traditionally obtained through a hand-on examination of a patient.
Another, more specific, object of the present invention is to provide a medical diagnostic apparatus which monitors sounds traditionally detected through use of a stethoscope.
A further object of the present invention is to provide such a medical diagnostic apparatus which is easy to use.
An additional object of the present invention is to provide such a medical diagnostic apparatus which facilitates the quick provision of medical diagnoses.
These and other objects of the present invention will be apparent from the drawings and descriptions herein.
SUMMARY OF THE INVENTION
A medical diagnostic device comprises a substrate or carrier, a plurality of acoustoelectric transducers or sensors attached to the substrate or carrier in a pre-established array, and a diagnosis generator operatively coupled to the transducers for automatically analyzing signals from the transducers to determine an internal condition of the patient. Optionally, the device further comprises a signal processor operatively coupled to the transducers for determining locations of points of origin of acoustic pressure waves generated by internal tissue structures of a patient on whom the substrate or carrier is placed.
In accordance with another feature of the present invention, the diagnosis generator is a digital computer. The transducers detect sounds produced by internal tissues of the patient and generate electrical signals encoding the detected sounds. The computer includes a memory storing a multiplicity of digitally encoded sample sounds produced by preselected internal tissues in abnormal conditions and further includes a comparator operatively connected to the memory and the transducers for comparing electrical signals from the transducers with sample sounds stored in the memory.
In accordance with a further feature of the present invention, the device additionally comprises a plurality of mechanical probes movably mounted to the substrate or carrier and actuators operatively connected to the probes for inducing movement of the probes, in a direction perpendicular to the substrate or carrier, from nascent or retracted positions to extended positions. The memory includes or stores sample sounds produced by internal tissues in response to percussive movements made by the probes, while the computer is operatively connected to the actuators for controlling operation thereof. More specifically, the computer includes programming for varying extension rate of the probes and for inducing a predetermined sequence of actuation of the probes.
Pursuant to an additional feature of the present invention, the device further comprises a plurality of additional sensors mounted to the substrate or carrier for measuring a preselected physiological parameter at different locations along a patient's skin surface. In that event, the memory additionally stores patterns of values of the parameter associated with different diagnostic conditions, while the computer is operatively connected to the sensors for analyzing readings from the sensors in accordance with values of the parameter stored in the memory. The additional sensors are preferably, but not exclusively, taken from the group consisting of temperature sensors, electrical skin resistance detectors, Doppler blood flow sensors, electronic blood pressure gauges, muscle tone measurement devices, EEG electrodes, EKG electrodes.
Where the sample sounds are characterized by respective patterns, the comparator is a pattern comparator.
Preferably, the substrate or carrier includes at least one flexible portion so that a first part of the substrate or carrier is disposable at an angle with respect to a second part of the substrate or carrier. More preferably, the substrate or carrier is flexible at multiple locations or even flexible throughout a continuous area so that the substrate or carrier is substantially conformable to a skin surface of a patient.
Another medical diagnostic device comprises, in accordance with a variant of the present invention, a substrate or carrier, a plurality of mechanical probes movably mounted to the substrate or carrier, and actuators operatively connected to the probes for inducing movement of the probes, in a direction perpendicular to the substrate or carrier, from nascent or retracted positions to extended positions. Sensors may be attached to the substrate or carrier for detecting a response of internal tissues of a patient to action of the probes after placement of the substrate or carrier in operative contact with the patient and movement of at least one of the probes by the actuators. A diagnosis generator may be operatively coupled to the sensors for automatically analyzing signals from the sensors to determine an internal condition of the patient.
Yet another medical diagnostic device comprises, in accordance with a variant of the present invention, a substrate or carrier, a plurality of sensors mounted to the substrate or carrier for measuring a preselected physiological parameter at different locations along a patient's skin surface, a memory storing patterns of values of the parameter associated with different diagnostic conditions, and a computer operatively connected to the sensors and the memory for analyzing readings from the sensors in accordance with values of the parameter stored in the memory.
A medical diagnostic apparatus in accordance with the present invention not only facilitates the collection of information of a kind traditionally obtained through a hand-on examination of a patient, but also facilitates the diagnosis of medical conditions based on the collected information. It is contemplated that the diagnosis is implemented automatically. Inasmuch as the knowledge and capabilities of experienced hands-on practitioners may be used in constructing the database and programming the diagnostic computer, the present invention envisions a substantial improvement in medical care. The knowledge and talents of past practitioners can be effectively stored for the use of future generations.
A medical diagnostic method comprises, in accordance with the present invention, placing a multiplicity of a
Coleman Henry
Marmor II Charles
Sapone William
Shaver Kevin
Sudol Neil
LandOfFree
Medical diagnostic device with multiple sensors on a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Medical diagnostic device with multiple sensors on a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical diagnostic device with multiple sensors on a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2961829