Medical devices utilizing optical fibers for simultaneous...

Surgery – Instruments – Light application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S088000

Reexamination Certificate

active

06575965

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to medical devices, particularly to medical devices with remote sensors and actuators, and more particularly to microminiaturized electromechanical devices for powering and controlling microgrippers mounted at a distal end of a catheter for medical application, or in a non-medical remote application, and which utilizes an optical fiber for simultaneously powering and controlling of the microgripper as well as communications relative to a physical environment of the microgripper.
In order to minimize patient discomfort and reduce healing time, the use of minimally invasive medical devices have increased rapidly. Reducing the size of these devices reduces the trauma even more.
Microactuators for remote and precise manipulation of small objects, such as coils to fill aneurysms in a blood vessel, have been under development for the past several years. These prior microgrippers and associated catheters, power sources etc, are exemplified by U.S. Pat. No. 5, 609,608 issued Mar. 11, 1997; U.S. Pat. No. 5,645,564 issued Jul. 8, 1997; U.S. Pat. No. 5,771,902 issued Jun. 30, 1998; U.S. Pat. No. 5,911,737 issued Jun. 15, 1999; and U.S. Pat. No. 6,102,917 issued Aug. 15, 2000. There has been a need for a micromechanism which can position and release objects in small diameter, remote locations and which can communicate to a user, that the object has been positioned and released where intended.
The present invention satisfies the above mentioned need by providing a catheter-based micromniniaturized minimally invasive intravascular micromechanical system utilizing optical fibers for simultaneous power, communications and control. The system of the invention involves a catheter having a microgripper mounted at the distal end, a fiberoptic cable disposed within the catheter and having a distal end proximate to the distal end of the catheter and a proximal end coupled to laser light energy, a laser-light-to-mechanical and/or electrical-power converter connected to receive light from the distal end of the fiberoptic cable and connected to mechanically actuate the microgripper, and to power an electronic sensor to provide information about a particular physical environment in which the microgripper is located. Basically the present invention involves the use of optically driven mechanical and electronic based sensors and devices including acoustic mechanisms for converting optical energy to usable energy at the distal end or tip of the fiberoptic.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a medical device, which utilizes optical fibers for simultaneous power, communications, and control of the device.
A further object of the invention is to provide micromechanical systems for medical procedures.
A further object of the invention is to provide power (electrical, thermal, acoustic, optical, etc.) at the distal tip of a small catheter or device.
A further object of the invention is to eliminate MRI incompatible materials (magnetic materials) from a medical device.
A further object of the invention is the use of light to discern when an embolic material has been released from the delivery device (microgripper).
A further object of the invention is to reduce extraneous heating (at bends in wires, rotation induced effects, etc.) of the medical device.
A further object of the invention is to increase the communication bandwidth to the distal tip of a catheter or other device.
Another object of the invention a micro-mechanical system for medical procedures involving a catheter having a microgripper mounted to the distal end and having a fiberoptic cable disposed within the catheter with a distal end proximate to the distal end of the catheter, a laser-light-to-mechanical and/or electrical-power converter to actuate the microgripper, and an electronic, chemical and/or mechanical sensor to provide signal information about the physical environment of the microgripper.
Another object of the invention is to provide a micro-mechanical system for medical procedures, which involves the use of a photo-voltaic cell that generates electrical power and an electromechanical motor connected to actuate a microgripper mounted to a distal end of a catheter.
Another object of the invention is to provide a light-sensitive material or a heat-sensitive photo-thermal material mechanically connected to actuate a microgripper in response to light received via an optical fiber.
Another object of the invention is to provide an external “controller” that is necessary to operate and display/record information about the microgripper and sensors.
Other objects and advantages of the present invention will become apparent from the following description and accompanying drawings. The present invention involves the use of fiberoptics (5 to 400 micron diameter fibers) to replace wires and other electrical and mechanical devices currently used to power, communicate and/or control medical devices. Optical fibers have a variety of features (MRI compatible, small, flexible, easily manufactured, high bandwidth, variable bandwidths, etc.) that provide most of the existing features plus many new features for medical devices including optical power transmission, sensing, and communication. Some of the devices (motors) and sensors with electronic parts will have magnetic characteristics. Some capabilities are better suited for x-ray and other procedures. By providing modular energy conversion interfaces (photons to thermal chemical or electrical or mechanical or acoustic), at the distal tip of a fiber, medical, devices can be designed with greater utility and for less cost. One embodiment utilizes a photo-electric transducer whereby the electrical energy can be used to perform electronic, mechanical, drug delivery, and/or acoustic actions. Another embodiment involves the use of photo-thermal effects to directly control temperature-based shape memory devices for controlling a microgripper, for example. Also, various sensors can be utilized to provide information as to the environment in which a catheter mounted microgripper is located.


REFERENCES:
patent: 5370649 (1994-12-01), Gardetto et al.
patent: 5498260 (1996-03-01), Rink et al.
patent: 5629577 (1997-05-01), Polla et al.
patent: 5700260 (1997-12-01), Cho et al.
patent: 5728092 (1998-03-01), Doiron et al.
patent: 5730700 (1998-03-01), Walther et al.
patent: 5769791 (1998-06-01), Benaron et al.
patent: 6055079 (2000-04-01), Hagans et al.
patent: 6091015 (2000-07-01), del Valle et al.
patent: 6095974 (2000-08-01), Shemwell et al.
patent: 6102917 (2000-08-01), Maitland et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Medical devices utilizing optical fibers for simultaneous... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Medical devices utilizing optical fibers for simultaneous..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical devices utilizing optical fibers for simultaneous... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3112720

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.