Medical connector for a respiratory assembly

Surgery – Respiratory method or device – Means for quickly connecting or disconnecting apparatus...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06698424

ABSTRACT:

BACKGROUND
Endotracheal intubation is a common procedure in the field of respiratory medical care. Endotracheal intubation tubes are used in many situations for providing artificial airways for passage of respiratory gasses and medical procedure devices to patients. For instance, endotracheal tubes may be used to insert a catheter therethrough in order to clean lung secretions from a patient. Endotracheal tubes may be used in situations where patients have stopped independent breathing and are required to be supported on a ventilator. In addition, endotracheal tubing may be used for other procedures such as: oxygenation of the lungs; elimination or reduction of residual carbon dioxide from the lungs; visual inspection of portions of the respiratory system; sampling sputum and gasses; measuring parameters such as flow rates, pressure, and temperature of gasses within the respiratory system; and/or the administration of medication, gasses, and/or lavage.
All of these procedures require various instruments to be used in conjunction with the respiratory circuit. In addition, other equipment may be incorporated into the circuit. For example, some respiratory circuits include a humidifier. Humidifiers are advantageous because breathing gasses supplied to a patient must be warm and humidified in order to provide quality inhalation therapy. A humidifier is typically connected in the breathing circuit between the ventilator and the patient. Air from the ventilator is warmed and moisturized by the humidifier and then is supplied to the patient. Due to the fact that various instruments and pieces of equipment must be connected and reconnected to the respiratory circuit, connectors are often employed in such circuits.
Connectors are often permanently bonded to instruments and manifolds in respiratory circuits. This type of attachment is advantageous because a secure and fluid-tight fit is provided. However, permanently bonding an instrument or other piece of equipment in a respiratory circuit has inherent disadvantages. For instance, an instrument that is permanently bonded to a connector cannot be removed therefrom and must be replaced oftentimes increasing the cost of the medical treatment. Further, permanently bonding a diagnostic instrument to a connector may prevent the clinician from performing some other type of procedure on the patient during ventilation of the patient. Additionally, damage of an instrument or piece of equipment that is permanently bonded to a connector may necessitate the replacement of several components of the respiratory circuit.
Connectors which are detachable have been used in order to overcome the problems associated with permanently bonded connectors in respiratory circuits. A detachable connector allows for various instruments and pieces of equipment to be interchanged in a respiratory breathing circuit. As such, the respiratory breathing circuit can be configured to provide for an increased number of procedures. Additionally, the ability to remove instruments from the breathing apparatus may allow for the instrument to be cleaned, hence reducing the costs associated with the procedure.
However, problems with disconnect medical connectors do exist. Typically, such connectors are interference-fit connectors. For instance, a fitting on a catheter may be connected to a complimentary fitting on a manifold of a respiratory breathing circuit by forcing one fitting onto the other. The catheter is then held onto the manifold via an interference fit between the two fittings. Since the connection is not a permanent connection, air or other fluids may leak through this interference-fit connection. Additionally, if the fittings of interference-fit connectors are not adequately pressed against one another, forces could act on the connection to accidentally disconnect the connection. Obviously, such a result is unacceptable. Also, multiple fittings which are connected together via an interference fit may sometimes be difficult for a doctor or caregiver to disconnect when it is necessary to remove the surgical instrument. One example of an interference-fit connector is shown in U.S. Pat. No. 5,820,614.
The present invention improves the general type of medical connectors currently employed, and further addresses the need in the medical field for an improved medical connector for use with a respiratory breathing circuit.
SUMMARY
Objects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
The present invention provides for a connection assembly that is used with a respiratory circuit assembly. The connection assembly includes a cylindrical first connection member that has a bore therethrough. The first connection member is configured for engagement with a first respiratory circuit member and allows for transport of fluids and objects therethrough. The first connection member has a locking member that is located thereon for engagement with a second connection member to prevent disengagement between the first and second connection members. In one embodiment, this locking member includes a recess on one end of the first connection member. A portion of the recess defines at least one ramp on the first connection member.
A second connection member is present that has a cylindrical body with a bore therethrough. The second connection member allows for the transport of fluids and objects therethrough, and is configured for engagement with a second respiratory circuit member. The second connection member has a disconnect member with a curved surface at least where the disconnect member is located in the recess during engagement between the locking member and the first connection member. Relative rotation between the first connection member and the second connection member causes the curved surface to move along the ramp. This effects disengagement of the locking member and the first connection member, and causes separation of the first and second connection members.
The present invention also includes a connection assembly as immediately discussed where the disconnect member is a cylindrical irrigation port.
Further, the present invention includes a connection assembly as previously discussed where the locking member includes a locking ring that substantially surrounds the circumference of the first connection member. The locking ring is located proximate to the recess of the first connection member. The second connection member has a groove for engaging the locking ring and acting with the locking ring to prevent disengagement between the second connection member and the first connection member.
The present invention also includes a connection assembly as immediately discussed where the disconnect member has at least part of the surface being curved where the disconnect member engages along the ramped surface.
Further included in the present invention is a connection assembly as previously discussed where the disconnect member is a substantially cylindrical irrigation port.
Further included in the present invention is an exemplary embodiment as previously discussed where the locking member is at least one barb located on one of the first and second connection members.
In one embodiment of the connection assembly, a snap fit member is present on at least one of the first and second connection members. The snap fit member hinders unintentional disengagement of the first and second connection members. Relative movement between the first connection member and the disconnect member motivates a separation of the first and second connection members.
Further included in the present invention is an exemplary embodiment as previously mentioned where the snap fit member is at least one barb located on the second connection member.
Additionally, the present invention includes an embodiment as previously discussed where the snap fit member is a locking ring that substantially surrounds the first connection member. The second connection member has a groove for rece

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Medical connector for a respiratory assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Medical connector for a respiratory assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical connector for a respiratory assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3196958

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.