Medical apparatus with remote control

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S131000

Reexamination Certificate

active

06689091

ABSTRACT:

TECHNICAL FIELD
The present invention is directed to an apparatus for monitoring and/or controlling a medical device, such as an infusion pump, from a remote location.
BACKGROUND OF INVENTION
An infusion pump is used to automatically administer liquid medicant to a patient. The liquid medicant is supplied from a source of medicant and pumped into the patient via a catheter or other injection device. The manner in which the liquid is infused is controlled by the infusion pump, which may have various modes of infusion, such as a continuous mode in which the liquid medicant is continuously infused at a constant rate, or a ramp mode in which the rate of infusion gradually increases, then remains constant, and then gradually decreases.
Typically, the monitoring of an infusion pump is performed by reviewing a visual display means incorporated in the infusion pump, and the control of the infusion pump is performed by activating an input device, such as a keypad, incorporated with the infusion pump. Consequently, the monitoring and/or control of an infusion pump is performed at the same location at which the infusion pump is disposed.
Additionally, for many types of medical treatments, the impact and ultimate usefulness of the treatment depends on the patient's tolerability and sensitivity to the treatment. Such measures assist physicians in accurately and efficiently treating patients. To date, however, most medical treatments are provided to the patient based on objective measurements, rather than on actual measurements of the specific subject or environment of the subject.
For example, typical medical treatment parameters for many drug therapies are provided based on the generic circadian system. Under the circadian system it has been know in the medical industry that typical biological functions of plants and animals reoccur at approximately 24-hour intervals. In humans, the body's clock is located in the suprachiasmatic nucleus (SCN), a distinct group of cells found within the hypothalamus. The SCN controls or coordinates the circadian rhythm in the human body. Typically, a human's circadian rhythm is calibrated by the alternation of light through the eyes and darkness via melatonin secretion by the pineal gland.
Furthermore, the cellular metabolism and proliferation in normal human tissues display similar rhythms, and thus have predictable amplitudes and times of peak and trough. Such rhythms influence drug pharmacology, tolerability, and ultimate usefulness. For example, it has been thought that the circadian rhythm influences the uses and effects of anti-cancer medication, including tolerability and anti-tumor efficacy in cancer treatment. Therefore, in chronopharmacologic intervention, anti-cancer drugs are delivered according to a standard circadian rhythm, especially with chemotherapy. For example, Floxuridine delivery is typically given in four doses, each dose dependent on the time of the day:
14% of dose between 9 am and 3 pm;
68% of dose between 3 pm and 9 pm;
14% of dose between 9 pm and 3 am; and,
4% of dose between 3 am and 9 am.
Generally, the time at which the medication is delivered is selected by the physician to objectively coincide with changes in the patient's metabolism. However, the circadian rhythm is merely an estimate of the changes in the patient's metabolism, and is not based on the actual patient's metabolism. Thus, whether the medication delivery actually coincides with the patient's actual metabolism is neither evaluated nor determined.
Additionally, different medical treatments have different optimum dosing time-profiles. For example, different anti-tumor drugs are typically dosed at different times: Epirubicin and Daunorubicin are typically dosed at 2 hours after light onset; Cyclophasphamide is typically dosed at 12 hours after light onset; Cisplatin is typically dosed at 15 hours after light onset; and, Vinblastine is typically dosed at 18 hours after light onset. As can be seen, different drugs have different mechanisms of action.
Other factors, however, may also affect proper medical treatment. For example, the minimum sensitivity of normal tissue is thought to be related to the enzyme levels that affect drug metabolism (e.g., glutathione). An overall driver of these variables is thought to be the rest-activity cycle of the patient. Because of this effect, it is known that laboratory rat studies should be conducted with the animal subjected to a 12 hour light, and 12 hour dark cycle.
Nevertheless, it is known that different patients, and with regard to cancer treatment, even different tumors, are not all on the same circadian cycle. Thus, there are at least two aspects one needs to optimize during circadian therapy: (1) the peak sensitivity of the tumor(s); and, (2) the minimum sensitivity of the normal tissues.
Standard chronopharmacologic intervention takes advantage of the circadian rhythm in drug tolerability by controlling the timing and dosing. Thus, it can reduce the effect of toxicity and improve the quality of life for the patient. Furthermore, with many drugs, including chemotherapy drugs, by administering a higher maximum tolerated dose at the least toxic circadian time, an improvement in survival may be derived. However, as explained above, there are numerous flaws with providing medical treatments following the standard circadian system.
SUMMARY OF THE INVENTION
According to one aspect of the present invention, the medical apparatus has a programmable medical device for administering a medical treatment to a patient, the programmable medical device being disposed at a first location, and a remote controller for controlling the programmable medical device, the remote controller being disposed at a second location remote from the first location at which the programmable medical device is disposed. The programmable medical device includes means for administering the medical treatment to the patient and an input device for allowing a user to input control commands to control the administering means. The remote controller includes a display device, means operatively coupled to the display device for generating a visual display of a virtual input device substantially corresponding to the input device of the programmable medical device, and means for allowing a user at the second location to activate the virtual input device to allow the user to control the operation of the programmable medical device from the second location.
The input device may be, for example, a keypad, and the virtual input device may be a visual display of a plurality of keys having substantially the same configuration as the keypad.
The programmable medical device may be an infusion pump for administering a liquid medicant to a patient, which includes a liquid injection device adapted to be connected to the patient, a conduit connected to the liquid injection device, a pumping mechanism for pumping the liquid medicant through the conduit and into the patient via the liquid injection device, and a controller for controlling the pumping mechanism.
According to another aspect of the present invention, the medical treatment device has a supply of medication and a means for delivering the medication to the patient using a control algorithm and a sensing device. The control algorithm is coupled to the medical device. The sensing device is coupled to the control algorithm and the sensing device sends a signal to the control algorithm. The control algorithm processes the signal received from the sensing device and develops a feedback control based on a result of processing the signal to determine whether medication should be delivered from the medical treatment device to the patient. The feedback control is provided to the medical treatment device to control the delivery of the medical treatment to the patient. The remote controller for the device is disposed at a second location remote from the first location. The remote controller has an input device to control operation of the control algorithm.
According to yet another aspect of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Medical apparatus with remote control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Medical apparatus with remote control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical apparatus with remote control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3347150

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.