Special receptacle or package – For holding a machine readable recording medium – For holding an optical disc
Reexamination Certificate
2000-06-19
2002-07-16
Yu, Mickey (Department: 3728)
Special receptacle or package
For holding a machine readable recording medium
For holding an optical disc
C206S311000, C206S312000, C206S313000, C206S309000
Reexamination Certificate
active
06419082
ABSTRACT:
TECHNICAL FIELD
The present invention relates in general to media storage units, and in particular, to fabric pocket structures used to store media.
BACKGROUND INFORMATION
Media and especially media for recording music has changed significantly over the years. Early media included records, eight track magnetic tape, and cassettes. With the advent of compact discs (CDs), small media storage units can now store a considerable number of media elements. The small physical size of media for recoding information, for example the CD, has led to the standardization of media for music, instructional, software and other data content. The CD format has been extended to both read only and read/write, further increasing the use of this media. Disc media other than CDs (e.g., mini Disc by Sony) which have the high density storage and small size have also been applied to music. Recently the introduction of the digital versatile disc (DVD), in the same physical size as the CD, has enabled video as content that can be played on small portable playstations. The fact that a standard, compact media size (DVD and CD) has emerged and the fact that all types of content including music, pictures, movies, databases, software, games, etc., have become available on these media, has created a new paradigm in portability of players and storage devices.
Since many people are acquiring large collections of CDs and now the new DVD media, there is a growing need for storage devices for the media. A pocket or a sleeve is one of the popular storage structures for media that is simple, compact and provides protection for CDs, DVDs and other media. There are many styles of pockets or sleeves on the market; many are made out of material such as plastic or cloth. When pockets are used in conjunction with a housing or container for the pockets, there is a need for the pockets to be separated so the information on the media stored in the pocket may be observed for identification. Since it is desirable to have the pockets in a storage unit coupled together so they operate as a unit, a method of separating individual pockets while maintaining the integrity of the group of pockets is needed. The U.S. Pat. No. 5,682,992 issued to Hunt et al. teaches one such method of grouping pockets. In this reference, a z-fold (referred to as zigzag) cloth structure is disclosed which creates overlaid planes that are joined to make pockets. In Hunt et al., pockets are made by seaming the overlaid planes starting at a bottom up to a point a distance “x” from the midpoint of the planes. The seam is interrupted for another distance “x” and then commenced with a next overlaying plane. This method creates opposing pockets sharing a common plan and separable (one pocket away from the next by a distance “x” in either direction). Hunt et al., also creates a pocket structure that remains fixed in a pocket width (opening or expansion) as the pockets are separated to allow media to be accessed for retrieval. Seaming each pocket starting at the bottom makes an enclosed half pocket where the edge of the media is protected for half its diameter or width minus the distance “2x” at which seaming stops. To make a pocket by this method and separable by larger amounts requires more and more of the pocket seam to be truncated creating a smaller and smaller enclosed pocket. The pocket taught in Hunt et al, remains constant in width (expansion) when the pockets are separated keeping media in the center of the pocket. Making a media pocket with this feature adds considerable labor and cost. Likewise, when the pockets with this feature are separated, fixing a media within the center of the pocket may restrict the media from moving further, exposing its surface for viewing. While the pocket features disclosed and claimed in Hunt et al. may differentiate it from existing art, they add cost and do not appreciably improve the functional design of the pocket itself The seaming method used in Hunt et al., where the seam extends outside and along almost one half the media (one-half minus “2x”) causes the pocket to be larger than is necessary requiring a large housing when the separable pockets are incorporated into a complete storage unit. Seaming a pocket over a large curved area also makes placing an adhesive, sewing or otherwise bonding this curved area difficult.
A z-fold pocket structure with its common or shared plane creates pockets having openings that face in opposite directions. While this may be viewed as a limitation, the common plane shared by two pockets may require less material than some other designs. A housing that makes use of the z-fold pocket for storing media is disclosed in U.S. Pat. No. 5,785,399 issued to Frankeny, et al. The storage unit has a design that allows selectively exposing the openings of a z-fold separable pocket structure like the one in Hunt et al. While the z-fold pocket structure has advantages, the structure disclosed in Hunt et al. with its claimed limitations is difficult to manufacture and requires considerable manual labor and a manufacturing location where labor costs are very low.
Therefore there is a need for a z-fold expandable and separable pocket structure which is simpler to make, smaller, lower in cost, and maintains the functionality and utility of a pocket structure with opposing pocket openings.
SUMMARY OF THE INVENTION
Expandable and separable z-fold pockets are made by starting with a z-folded web of material with novel outline design features. The material, cut into repetitive patterns, is z-folded, overlaid and joined to make an expandable and separable pocket structure that is simple to manufacture yet retains all the necessary features for storing and protecting a media. Necessary features for storing a media in a pocket require the pocket to cover the media element surfaces where information is stored when the pocket is not expanded and to provide bottom and side retention for the stored media at all times.
The material pattern has the general shape of the media to be stored (e.g., round for a CD). At the centerline of the material pattern opposing and symmetrical tabs project out from both unfolded sides of the material planes. These tabs, in general, may be cut on an angle and extended back toward the folded sides of the material plane. The distance between folded sides defines a closed dimension of a finished pocket. Additionally, in embodiments of the present invention, a slit is made at the center of each unfolded side starting at the midpoint of the material planes and extending a distance toward the center of the material plane. The slit is used with one or two tabs on each unfolded side. Using two tabs, the tabs are free to be independently joined with other corresponding but opposing tabs on overlaid adjacent material planes. By alternately joining tabs, the sides of the opposing pockets are formed. These joined tabs create the retaining side members of the pockets while remaining outside the pocket itself This makes joining the material planes, to form the retaining sides of the pockets, simpler requiring less labor to make, requiring less joining material, and reducing the outside dimension of finished pockets for a particular sized media element.
In one embodiment of the present invention two single tabs, when folded and joined, create a retaining sides similar to the retaining sides formed by joining two double tabs. Two tabs, one on each unfolded side of a material plane, are folded along a fold line and joined to an adjacent overlaid material not integral with the two single tabs. Joining tabs on N overlaid material planes creates N−1 expandable and separable pockets of the expandable media storage unit.
The shape of the tabs allow the pocket opening to expand an amount as the pockets are separated to access stored media. The slits function to allow the pockets to translate and separate during pocket expansion. The separation function provided for by the slits allows the expanded pocket to have a full retention depth of one half an un-expanded pocket. As pockets are being separate
Arnold Troy
Frankeny Richard F.
Winstead Sechrest & Minick P.C.
Yu Mickey
LandOfFree
Media storage unit with expandable and separable pockets does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Media storage unit with expandable and separable pockets, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Media storage unit with expandable and separable pockets will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2851960