Media connector interface for electrical apparatus

Electrical connectors – Connector movable between accessible and inaccessible positions

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06561824

ABSTRACT:

BACKGROUND
1. Field of the Invention
The present invention relates to electrical interface connections. More particularly, it relates to electrical apparatus configured to couple with a physical/electrical media plug.
2. Description of Related Art
The field of data transmissions over phone lines or network cables is a rapidly expanding field. Users of electrical apparatus such as laptops, notebooks, palmtops, and PDAs are finding such practice to be of great value.
For example, there are numerous public and private networks and databases which store data or programs. Absent the ability to connect with such systems over the telephone lines, a user is relegated to relying upon the exchange of discs or tapes in order to receive data suitable for use with their computer.
Similarly, companies performing tasks that are integrated are aided by local area networks (“LANs”) which permit personnel to exchange electronically retrievable data. The ability to freely transfer data and information from one computer to another computer over a telephone line or cable can dramatically increase productivity and reduce overall production time.
Furthermore, the increased use of palmtops and PDAs has increased the need to be able to transfer data between such apparatus and other computers, particularly personal computers. This enables a user to quickly transfer information, such as telephone or address list, without having to make manual entries.
The interface between a computer and a cable or telephone line is typically accomplished through a physical/electrical media connector. One conventional type of media connector is the RJ-type connector. RJ-type connectors are used by almost all telephone companies throughout the world for many applications, the most important of which is interconnection of telephones with telephone lines. For this reason, stringent standardization of connectors has been established to enable compatibility and interactivity. Due to the simplicity of the connection and the established standards, RJ-type connectors are used extensively in the computer industries and in other industries where communication over telephone lines or other types of cables is required.
RJ-type connectors include a plug or contact block and a receptacle or socket. The plug comprises a small block coupled with a cable, such as a telephone line. Housed within the block are a plurality of distinct metal contacts. Each of the metal contacts are attached to a discrete wire within the cable. A plurality of thin slots extend from the end of the block to each of the contacts. Mounted on the outside of the block is a flexible retention arm.
The socket is integrally formed on the side of the electrical apparatus and is configured to receive the plug. Disposed within the socket are a plurality of flexible contact wires. The contact wires are oriented to be received within corresponding slots on the plug when the plug is slid into the socket. The contact wires within the socket press against corresponding contacts on the plug to complete electrical connection between the plug and the electrical apparatus. The interior surface of the socket also defines a catch that receives the retention arm on the plug so as to mechanically secure the plug within the socket. To remove the plug, the retention arm is manually flexed to release the catch, thereby enabling manual removal of the plug from the socket.
Although RJ type connectors are used extensively, they have several shortcomings. Most notably, the achievements in micro processing have enabled manufactures to dramatically downsize various electrical apparatus. For example, mobile telephones and PDA now exist that can easily fit in a shirt pocket. Such apparatus, however, are limited from further downsizing by the size of the socket in which the plug is received. That is, to enable an electrical apparatus to house a standard sized socket, the electrical apparatus must have at least the same thickness as the socket.
As computer housings have continued to be downsized, internal spatial restrictions have required the establishment of standards for the internal accessories of the computer. One set of standards applicable to memory cards has been developed by the Personal Computer Memory Card International Association (PCMCIA). This organization is comprised of hundreds of manufacturers of memory cards and related peripheral equipment. The PCMCIA has determined that the spatial standard for all memory cards used in down-sized computers should be restricted to a rectangular space approximately 55 mm in width, 85 mm in length, and 5 mm in depth.
In addition to the PCMCIA Standard, other standards are currently in development. Each proposal contains various specifications including device form factor and specific electrical characteristics. The specifications may include both computer peripherals as well as memory cards. One trend, however, common to many of these proposals is the trend to smaller, thinner peripheral cards.
In keeping with the standards for small memory and peripheral cards, internal modem manufacturers have adopted the same spatial standards for use with their down-sized communications cards. By complying with the standards for established and future cards, communications card manufacturers have assured themselves of compatibility and spatial conformity with computers utilizing the standards. These standards, current and future, are referred to herein as “thin-architecture” standards.
The constraints imposed by these standards have resulted in the development of “credit card” communications cards. Most of the components formerly housed within a modem are now contained within a credit card-sized wafer. One communications card conforming to the PCMCIA standard is produced by Intel under the ExCA□trademark and is similar to that illustrated in FIG.
3
.
Although the communications card illustrated serves the functions of a modem, a similar card has been contemplated for use in LANs.
Besides limiting the size of the electrical apparatus, the socket which is recessed within the electrical apparatus occupies valuable space. Even in larger apparatus it is desirable to optimize the use of space so as to minimize size. The space occupied by the socket is wasted when coupling with a plug is not required. Furthermore, the presence of a large open socket on an electrical apparatus distracts from the aesthetic appearance of the computer. The socket also acts as a sink to collect dirt and other debris.
OBJECTS AND BRIEF SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide electrical apparatus that are capable of direct connection with a cable or wire through a media plug of a physical/electrical media connector.
Another object of the present invention is to provide electrical apparatus that are not limited in size by standard media plugs.
Yet another object of the present invention is to provide electrical apparatus that minimize the space that receives a standard media plug.
Finally, another object of the present invention is to provide electrical apparatus wherein the socket that receives the standard media plug can be selectively closed.
Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims.
To achieve the foregoing objects, and in accordance with the invention as embodied and broadly described herein, an aperture block is provided for coupling with a physical/electrical media plug. The aperture block is attached to an electrical apparatus, for example, a laptop, notebook, palmtop, PDA, pager, modem, or telephone. Non-conventional electrical apparatus can include televisions, stereo equipment, automobiles, and appliances.
The physical/electrical media plug (such as an RJ-11) comprises a small contact pin block c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Media connector interface for electrical apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Media connector interface for electrical apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Media connector interface for electrical apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3009428

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.