Mechanism for the deployment of endovascular implants

Surgery – Instruments – Means for inserting or removing conduit within body

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S194000

Reexamination Certificate

active

06689141

ABSTRACT:

FEDERALLY-SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
BACKGROUND OF THE INVENTION
This invention relates to the field of methods and devices for the embolization of vascular aneurysms and similar vascular abnormalities. More specifically, the present invention relates to a mechanism for deploying an endovascular implant, such as a microcoil, into a targeted vascular site, and releasing or detaching the implant in the site.
The embolization of blood vessels is desired in a number of clinical situations. For example, vascular embolization has been used to control vascular bleeding, to occlude the blood supply to tumors, and to occlude vascular aneurysms, particularly intracranial aneurysms. In recent years, vascular embolization for the treatment of aneurysms has received much attention. Several different treatment modalities have been employed in the prior art. U.S. Pat. No. 4,819,637—Dormandy, Jr. et al., for example, describes a vascular embolization system that employs a detachable balloon delivered to the aneurysm site by an intravascular catheter. The balloon is carried into the aneurysm at the tip of the catheter, and it is inflated inside the aneurysm with a solidifying fluid (typically a polymerizable resin or gel) to occlude the aneurysm. The balloon is then detached from the catheter by gentle traction on the catheter. While the balloon-type embolization device can provide an effective occlusion of many types of aneurysms, it is difficult to retrieve or move after the solidifying fluid sets, and it is difficult to visualize unless it is filled with a contrast material. Furthermore, there are risks of balloon rupture during inflation and of premature detachment of the balloon from the catheter.
Another approach is the direct injection of a liquid polymer embolic agent into the vascular site to be occluded. One type of liquid polymer used in the direct injection technique is a rapidly polymerizing liquid, such as a cyanoacrylate resin, particularly isobutyl cyanoacrylate, that is delivered to the target site as a liquid, and then is polymerized in situ. Alternatively, a liquid polymer that is precipitated at the target site from a carrier solution has been used. An example of this type of embolic agent is a cellulose acetate polymer mixed with bismuth trioxide and dissolved in dimethyl sulfoxide (DMSO). Another type is ethylene vinyl alcohol dissolved in DMSO. On contact with blood, the DMSO diffuses out, and the polymer precipitates out and rapidly hardens into an embolic mass that conforms to the shape of the aneurysm. Other examples of materials used in this “direct injection” method are disclosed in the following U.S. Pat. Nos. 4,551,132—Pásztor et al.; 4,795,741—Leshchiner et al.; 5,525,334—Ito et al.; and 5,580,568—Greff et al.
The direct injection of liquid polymer embolic agents has proven difficult in practice. For example, migration of the polymeric material from the aneurysm and into the adjacent blood vessel has presented a problem. In addition, visualization of the embolization material requires that a contrasting agent be mixed with it, and selecting embolization materials and contrasting agents that are mutually compatible may result in performance compromises that are less than optimal. Furthermore, precise control of the deployment of the polymeric embolization material is difficult, leading to the risk of improper placement and/or premature solidification of the material. Moreover, once the embolization material is deployed and solidified, it is difficult to move or retrieve.
Another approach that has shown promise is the use of thrombogenic filaments, or filamentous embolic implants. One type of filamentous implant is the so-called “microcoil”. Microcoils may be made of a biocompatible metal alloy (typically platinum and tungsten) or a suitable polymer. If made of metal, the coil may be provided with Dacron fibers to increase thrombogenicity. The coil is deployed through a microcatheter to the vascular site. Examples of microcoils are disclosed in the following U.S. Pat. Nos. 4,994,069—Ritchart et al.; 5,133,731—Butler et al.; 5,226,911—Chee et al.; 5,312,415—Palermo; 5,382,259—Phelps et al.; 5,382,260—Dormandy, Jr. et al.; 5,476,472—Dormandy, Jr. et al.; 5,578,074—Mirigian; 5,582,619—Ken; 5,624,461—Mariant; 5,645,558—Horton; 5,658,308—Snyder; and 5,718,711—Berenstein et al.
The microcoil approach has met with some success in treating small aneurysms with narrow necks, but the coil must be tightly packed into the aneurysm to avoid shifting that can lead to recanalization. Microcoils have been less successful in the treatment of larger aneurysms, especially those with relatively wide necks. A disadvantage of microcoils is that they are not easily retrievable; if a coil migrates out of the aneurysm, a second procedure to retrieve it and move it back into place is necessary. Furthermore, complete packing of an aneurysm using microcoils can be difficult to achieve in practice.
A specific type of microcoil that has achieved a measure of success is the Guglielmi Detachable Coil (“GDC”). The GDC employs a platinum wire coil fixed to a stainless steel guidewire by a welded connection. After the coil is placed inside an aneurysm, an electrical current is applied to the guidewire, which oxidizes the weld connection, thereby detaching the coil from the guidewire. The application of the current also creates a positive electrical charge on the coil, which attracts negatively-charged blood cells, platelets, and fibrinogen, thereby increasing the thrombogenicity of the coil. Several coils of different diameters and lengths can be packed into an aneurysm until the aneurysm is completely filled. The coils thus create and hold a thrombus within the aneurysm, inhibiting its displacement and its fragmentation.
The advantages of the GDC procedure are the ability to withdraw and relocate the coil if it migrates from its desired location, and the enhanced ability to promote the formation of a stable thrombus within the aneurysm. Nevertheless, as in conventional microcoil techniques, the successful use of the GDC procedure has been substantially limited to small aneurysms with narrow necks.
A more recently developed type of filamentous embolic implant is disclosed in U.S. Pat. No. 6,015,424—Rosenbluth et al., assigned to the assignee of the present invention. This type of filamentous embolic implant is controllably transformable from a soft, compliant state to a rigid or semi-rigid state. Specifically, the transformable filamentous implant may include a polymer that is transformable by contact with vascular blood or with injected saline solution, or it may include a metal that is transformable by electrolytic corrosion. One end of the implant is releasably attached to the distal end of an elongate, hollow deployment wire that is insertable through a microcatheter to the target vascular site. The implant and the deployment wire are passed through the microcatheter until the distal end of the deployment wire is located within or adjacent to the target vascular site. At this point, the filamentous implant is detached from the wire. In this device, the distal end of the deployment wire terminates in a cup-like holder that frictionally engages the proximal end of the filamentous implant. To detach the filamentous implant, a fluid (e.g., saline solution) is flowed through the deployment wire and enters the cup-like holder through an opening, thereby pushing the filamentous implant out of the holder by fluid pressure.
While filamentous embolic implants have shown great promise, improvement has been sought in the mechanisms for deploying these devices. In particular, improvements have been sought in the coupling mechanisms by which the embolic implant is detachably attached to a deployment instrument for installation in a target vascular site. Examples of recent developments in this area are described in the following patent publications: U.S. Pat. Nos. 5,814,062—Sepetka et al.; 5,891,130—Palermo et al.; 6,063,100—Diaz et al.; 6,068,644—Lulu et al.; and EP 0 941 703 A1—Cordis

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mechanism for the deployment of endovascular implants does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mechanism for the deployment of endovascular implants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mechanism for the deployment of endovascular implants will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3282564

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.