Mechanism for constructing predictive models that allow...

Data processing: structural design – modeling – simulation – and em – Modeling by mathematical expression

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C706S016000, C706S025000, C706S052000

Reexamination Certificate

active

06810368

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a method for constructing predictive models that can be used to make predictions in situations where the inputs to those models can have values that are missing or are otherwise unknown.
BACKGROUND OF THE INVENTION
Thd invention considers a widely applicable method of constructing predictive models that are capable of generating reliable predictions even when the values of some model inputs are missing or are otherwise unknown. In this regard, it has been discerned that constructing such models is an important problem in many industries that employ predictive modeling in their operations. For example, predictive models are often used for direct-mail targeted-marketing purposes in industries that sell directly to consumers. In this application, predictive models are used to optimize return on marketing investment by ranking consumers according to their predicted responses to promotions, and then mailing promotional materials only to those consumers who are most likely to respond and generate revenue. Such predictive models typically employ demographic, credit, and other data as inputs, and these data often contain many missing values. Generating predictions with greater reliability despite the presence of missing values can lead to better returns on marketing investments for this application. Similar economic benefits can likewise be expected in other commercial applications of predictive modeling.
SUMMARY OF THE INVENTION
It has also been also discerned that numerous deficiencies exist in the prior art on how to handle missing values. With regard to constructing predictive models on the basis of training data, the prior art on handling missing values can be roughly divided into six categories (not mutually exclusive):
1) METHODS THAT IGNORE TRAINING CASES THAT CONTAIN MISSING VALUES. This approach is simple and straightforward to mechanize, but it can produce models that generate unreliable predictions when the proportion of missing values is high (see, for example, L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, Chapman and Hall, 1993; R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data, John Wiley and Sons, 1987; J. R. Quinlan, “Unknown attribute values in induction,” Proceedings of the Sixth International Machine Learning Workshop, pp 164-168, Morgan Kaufmann, 1989; and M. Singh, “Learning Bayesian networks from incomplete data,” Proceedings of the Fourteenth National Conference on Artificial Intelligence, pp 534-539, American Association for Artificial Intelligence, 1997).
2) METHODS THAT IGNORE DATA FIELDS THAT CONTAIN MISSING VALUES. Although rarely discussed in the literature, this approach is often employed in practice by data analysts, particularly in combination with the first approach. When the two approaches are combined, combinations of cases and data fields are removed from the training data until all remaining data fields and training cases contain known data values. The problem with ignoring data fields, however, is that it throws away potentially useful information that might have yielded more accurate models had alternative methods of handling missing values been employed.
3) METHODS THAT INTRODUCE “MISSING” AS A LEGITIMATE DATA VALUE. This approach is valid only when missing values convey information. For example, if the date of last pregnancy is missing from a patient's medical record, then it is likely that the patient either is male and is unable to become pregnant, or the patient is female and has never been pregnant. However, when values are missing for random reasons, the fact that they are missing conveys no information about the true data values. In such instances, treating “missing” as a legitimate data value can produce inferior models compared to other approaches to handling missing values (see, for example, J. R. Quinlan, “Unknown attribute values in induction,” Proceedings of the Sixth International Machine Learning Workshop, pp 164-168, Morgan Kaufmann, 1989). The reason for the inferior performance seems to stem from the fact that treating missing as a legitimate value in this case does not adequately take into account the fact that there actually should be a value but that value is not known (see, for example, M. Singh, “Learning Bayesian networks from incomplete data,” Proceedings of the Fourteenth National Conference on Artificial Intelligence, pp 534-539, American Association for Artificial Intelligence, 1997). In summary, when missing values convey information, it is reasonable to introduce “missing” as a legitimate value. When missing values convey no information, some other approach to handling these missing values should be employed.
4) METHODS THAT FILL-IN MISSING VALUES VIA IMPUTATION PROCEDURES. This approach involves replacing missing values by estimated values and then employing model-construction methods that assume that all data values are known (see, for example, L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, Chapman and Hall, 1993; R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data, John Wiley and Sons, 1987; J. R. Quinlan, “Unknown attribute values in induction,” Proceedings of the Sixth International Machine Learning Workshop, pp 164-168, Morgan Kaufmann, 1989; and M. Singh, “Learning Bayesian networks from incomplete data,” Proceedings of the Fourteenth National Conference on Artificial Intelligence, pp 534-539, American Association for Artificial Intelligence, 1997). The replacement can be performed once (i.e., single imputation) or several times (i.e., multiple imputation). Multiple imputation generally produces better results than single imputation (see, for example, R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data, John Wiley and Sons, 1987). However, in order to estimate missing values in the first place, one must construct models for those missing values. Because some models can be more accurate than others, the quality of the predictive model constructed from filled-in values is ultimately dependent on the quality of the missing-value models used to calculate those filled-in values. Moreover, constructing accurate missing-value models can itself be problematic, requiring invention to solve.
5) METHODS THAT EMPLOY WEIGHTING SCHEMES IN THE CALCULATION OF MODEL PARAMETERS IN AN ATTEMPT TO COMPENSATE FOR THE PRESENCE OF MISSING DATA. This approach is common in the analysis of survey data wherein people who are surveyed can choose not to respond to some or all of the survey questions. Adjustments are therefore made in the analysis of the results to compensate for nonresponses by introducing weighting factors in the calculations performed on the known responses (see, for example, R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data, John Wiley and Sons, 1987). The calculation of weights is based on assumed models for the occurrences of nonresponses. Inaccuracies in these models therefore produce inaccuracies in the analysis of the data.
Weighting schemes are also employed in some classification and regression tree algorithms (see, for example, J. R. Quinlan, “Unknown attribute values in induction,” Proceedings of the Sixth International Machine Learning Workshop, pp 164-168, Morgan Kaufmann, 1989). However, these weighting schemes are actually mathematically equivalent to performing multiple imputations with extremely large numbers of replacements. In essence, the weights correspond to probabilities in statistical models that are constructed for the missing values as part of the tree-building process. Instead of actually performing imputations and constructing trees from filled-in data, it is computationally more efficient to modify the tree-construction algorithms to employ weights that are calculated from the missing-value models. Because these weighting schemes can be derived from imputation procedures, they suffer the same drawbacks as do imputation procedures.
6) METHODS THAT INTRODUCE F

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mechanism for constructing predictive models that allow... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mechanism for constructing predictive models that allow..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mechanism for constructing predictive models that allow... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3259886

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.