Optics: measuring and testing – Photometers
Reexamination Certificate
2000-06-12
2002-11-19
Stafira, Michael P. (Department: 2877)
Optics: measuring and testing
Photometers
C148S508000
Reexamination Certificate
active
06483578
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a method and apparatus for maintaining quality control in a laser peening apparatus, and more particularly, to a method and apparatus using test elements that will deflect when subjected to a laser pulse for ascertaining the magnitude of the impulse associated therewith.
2. Description of the Related Art
Laser shock processing, or laser shock peening, or laser peening, as it is also referred to, is a process for producing a region of deep compressive residual stresses imparted by laser pulses directed onto the surface area of a workpiece. Laser shock processing is an effective method of increasing fatigue resistance in metals by treating fatigue critical regions. For a more thorough background in the prior history of laser shock processing, a reference can be made to U.S. Pat. Nos. 5,131,957 and 5,741,559, such patents are explicitly hereby incorporated by reference.
Laser shock processing, as understood in the art and used herein, means utilizing a laser beam from a laser beam source to produce a strong localized compressive force on a portion of a surface by producing an explosive force by instantaneous ablation or vaporization of a painted, coated, or un-coated surface. Laser peening has been utilized to create a compressively stressed layer in the subsurface of a workpiece, thereby considerably increasing the resistance of the workpiece to fatigue failure. Laser shock processing typically utilizes two overlays: a transparent overlay (usually water) and an opaque overlay, typically an oil-based, acrylic-based, or water-based paint or tape. Laser shock processing can also utilize only a transparent overlay on a bare surface. During processing, a laser beam is directed to pass through the transparent overlay and is absorbed by the opaque overlay or bare surface, causing vaporization of a portion of the opaque overlay or bare surface, which results in rapid plasma formation and the generation of a high amplitude shock wave. The shock wave cold works the surface of the workpiece and creates compressive residual stresses, which provide an increase in fatigue resistance properties of the part. A workpiece may be processed by producing a matrix of spots that cover all or part of the fatigue-critical zone of the part.
Laser shock processing is being used for many applications within gas turbine engines, such as leading and trailing edges of fan and compressor airfoils. These applications, as well as others, are in need of efficient quality assurance testing during production runs using laser shock processing. The quality of laser shock processing depends upon the quality of the laser beam, the plasma plume, and subsequently the resultant shock wave that produces the residual compressive stresses. It also depends on the coupling of the laser beam to the opaque overlay or surface.
For these reasons, during laser shock processing, several parameters of the laser beam, such as temporal profile, spatial profile, and beam energy are desirably measured for each laser shot. These parameters provide information about the quality of the laser beam and indirectly provide a potential metric of a plasma plume characteristic or the shock wave magnitude, i.e., the pressure generated by the plasma plume is a function of the characteristics of the laser beam. Furthermore, the pressure profile of the shock wave in the workpiece is a function of the plasma plume characteristics. However, the information about the quality of the laser beam does not provide direct information about the characteristics of the plasma plume or the shock wave.
Conventional methods of assessing the quality of laser shock processing such as high cycle fatigue testing of laser shock peened components provide sufficient measures, however, they are time consuming and costly. Furthermore, these methods are not acceptable for continuous production since it requires terminating the processing while the fatigue test results are acquired.
A method disclosed in U.S. Pat. No. 5,951,790, entitled “Method of Monitoring and Controlling Laser Shock Peening Using An In Plane Deflection Test Coupon” measures the quality of laser shock processing. However, this method requires multiple laser shots in the form of a pattern to generate sufficient in-plane deflection in the gauge. These multiple shots require time to set up and apply the pattern. The amount of in-plane deflection generated by this technique is relatively small, requiring an instrument to measure small deflections with a high degree of precision.
SUMMARY OF THE INVENTION
The present invention provides a fast, reliable, and efficient method of measuring the quality of laser shock processing using only a single laser shot in each test. According to one form of the present invention, each test is performed with a mechanical gauge that measures the impact produced by a plasma plume ignited by the laser pulse. The mechanical gauge can be formed in the shape of a strip, or a sheet, or any other shape that can provide for a measurable deflection in the direction substantially perpendicular to and away from the impacted surface.
According to one preferred embodiment of the invention, a gauge for ensuring the proper operation of a laser shock processing system comprises a test element, and a mounting means for holding the test element such that a portion of the test element is in the anticipated path of a laser pulse, wherein the test element sustains a deflection in the direction substantially perpendicular to and away from the impacted surface when subjected to a single laser pulse, the deflection being indicative of the magnitude of the shock wave. The test element is preferably formed in the shape of a strip, or in the shape of a sheet.
According to one form of the invention, the test element is coated with a first overlay and a second overlay, the first overlay being an opaque material, such as paint or tape. The second overlay is transparent, and typically comprised of water. The thickness of the second overlay has a significant effect on the amount of deflection in the test element when all other processing variables are held constant. The thicker the second overlay, the greater the amount of deflection. In this embodiment, the thickness of the second overlay is controlled. In the embodiment utilizing a strip, the mounting means of the invention comprises a means for gripping one end of the test element while positioning the second end of the test element in the anticipated path of the laser pulse. In the sheet embodiment of the invention, the mounting means comprises a base having a recess, wherein the test element is positioned over the recess and in the anticipated path of the laser pulse. A recess can be any portion of the base that does not contact the test element including, but not limited to, a hole, a notch, a groove, and the unsupported area below a test element that overhangs the base.
In an alternative embodiment of the invention, a method of measuring the quality of laser shock processing comprises the steps of mounting a test element in the anticipated path of the laser pulse, laser peening the test element with a single laser pulse, measuring the deflection of the test element in the direction substantially perpendicular to and away from the impacted surface, and comparing the deflection measurement to a previously generated measurement data set. The previously generated measurement data set includes at least one value selected from the group including test element dimensions, test element material composition, second overlay thickness, laser pulse duration, the laser-pulse rise time, test element deflection measurement, laser power density, laser pulse energy, imparted residual stress in a workpiece, fatigue strength of a workpiece, fatigue life of a workpiece, and shock wave magnitude.
In yet another embodiment of the invention, a method of measuring the quality of laser shock processing comprises the steps of generating a data set; mounting a test element in the anticipated path of t
Clauer Allan H.
Dulaney Jeff L.
Lahrman David F.
Toller Steven M.
Knuth Randall J.
LSP Technologies Inc.
Stafira Michael P.
LandOfFree
Mechanical gauges for quality assurance of laser peening does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Mechanical gauges for quality assurance of laser peening, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mechanical gauges for quality assurance of laser peening will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2988353