Mechanical compression and vacuum release

Internal-combustion engines – Starting device – Compression relieving type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06394054

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention generally relates to internal combustion engines, and more particularly to a compression release and vacuum release mechanism for four-stoke cycle engines.
2. Description of the Related Art
Compression release mechanisms for four-stroke cycle engines are well known in the art. Generally, means are provided to hold one of the valves in the combustion chamber of the cylinder head slightly open during the compression stroke while cranking the engine. This action partially relieves the force of compression in the cylinder during starting, so that starting torque requirements of the engine are greatly reduced. When the engine starts and reaches running speeds, the compression release mechanism is rendered inoperable so that the engine may achieve fall performance. It is normally advantageous for the compression release mechanism to be associated with the exhaust valve so that the normal flow of the fuel/air mixture into the chamber through the intake valve, and the elimination of spent gases through the exhaust valve is not interrupted, and the normal direction of flow through the chamber is not reversed. Examples of compression release mechanisms for four-stroke engines are numerous and share a common principle which includes activating a valve displacement feature at low crankshaft speeds, i.e., at startup, and deactivating the same at significantly higher crankshaft speeds i.e., run mode.
Presently, conventional four-stoke engines require a significant amount of torque to turn the engine over during the power stroke when combustion is not taking place. This is so because the piston is then moving downwardly against a pressure difference due to increasing suction resulting from the partial discharge of gas from the cylinder during the immediately preceding compression stroke. The increase of torque required corresponds to a substantial operator or starter force required to drive the piston downwardly against that pressure difference.
In response to the torque developed by suction, one prior art combustion engine suggests using a contoured cam lobe which acts to hold the valve open longer between the compression and power strokes. Starting torque was decreased by this mechanism, however compression and accordingly engine power would significantly decrease compared to conventional engines which employ the traditional “pear-shaped” cam lobes. Yet another prior art mechanism employed a light spring placed on the stem side of the exhaust valve to hold the valve open during start up. However, significant intake and exhaust manifold pressures would be required to close the exhaust valve and thus longer times and increased user effort is required to start the engine.
Another device which compensates for torque caused as a result of suction force during the power stroke is disclosed in provisional Patent Application No. 60/231,818, filed Sep. 11, 2000, and assigned to the assignee of the present application, the disclosure of which is expressly incorporated herein by reference. This device utilizes a saddle member pinned to an accessible area of the camshaft and includes a pair of auxiliary cams to sequentially relieve compression and vacuum by lifting the exhaust valve during appropriate portions of the compression and power stroke at engine cranking speeds. Although effective, this device is not readily adaptable to some existing engine designs. Traditionally used engine crankcase designs require casting and machining modifications before this release may be implemented.
Accordingly, it is desired to provide a release mechanism that addresses the significant torque developed by both the compression and power strokes and one that is effective in operation and relatively simple in construction. It is further desired to provide a release mechanism which addresses this significant torque, and is retrofittable to a substantial number of existing engine crankcases without significant modification to the engine.
SUMMARY OF THE INVENTION
The present invention overcomes the disadvantages of prior internal combustion engines by providing a mechanical compression and vacuum release, of simple construct, including an operating member rotationally supported by a camshaft and attached to a centrifugally activated flyweight wherein movement of the centrifugal flyweight causes radial translation of a vacuum release member through an operator attached to the operating shaft and the vacuum release member is in lifting engagement with one of the intake or exhaust valves.
A four-stroke internal combustion engine is provided and includes a cylinder block having a cylinder therein and a piston reciprocally disposed within the cylinder. The piston is operably engaged with a crankshaft. At least one intake valve and exhaust valve are reciprocally driven by a camshaft. A vacuum release mechanism includes an operating member rotationally supported by the camshaft and has an operator disposed thereon. A centrifugally actuated flyweight member is attached to the operating member, wherein rotation of the camshaft above engine cranking speeds causes the flyweight member to rotate the operating member. A vacuum release member is reciprocally supported by the camshaft and in engagement with the operator wherein rotational movement of the operating member causes radial translation of the vacuum release member through the operator. The operating member and flyweight are urged to a first position at engine cranking speeds and rotated by the flyweight member through centrifugal force to a second position at engine running speeds. The vacuum release member is in lifting engagement with one of the valves at the first position during a portion of the power stroke of the piston and out of lifting engagement with the valve at the second position.
The present invention further provides a compression release mechanism. A compression release member is attached to the operator and urged to radially extend in response to rotation of the operating member. The compression release member and the vacuum release member successively attain lifting engagement with an intake or exhaust valve at the first position. The lifting engagement of the compression release member coincides with at least a portion of the compression stroke and the lifting engagement of said vacuum release member coincides with at least a portion of the power stroke. The compression and vacuum release members are out of lifting engagement with the valve at the second position.
An object of the present invention is to provide an engine having a mechanical vacuum release mechanism that overcomes substantial operator or starter force caused by suction forces acting on the piston during the power stroke at engine cranking speeds.
Another object of the present invention is to provide a compression and vacuum release mechanism easily retrofittable with existing engines crankcases wherein the release mechanism is disposed within the profile of the existing camshaft assembly. These and other objects, advantages and features are accomplished according to the devices, assemblies and methods of the present invention.


REFERENCES:
patent: 2999491 (1961-09-01), Harkness
patent: 3306276 (1967-02-01), Harkness et al.
patent: 3362390 (1968-01-01), Etsy
patent: RE26462 (1968-09-01), Harkness et al.
patent: 3511219 (1970-05-01), Esty
patent: 3897768 (1975-08-01), Thiel
patent: 3901199 (1975-08-01), Smith
patent: 3981289 (1976-09-01), Harkness
patent: 4648362 (1987-03-01), Kastlunger
patent: 4672930 (1987-06-01), Sumi
patent: 4696266 (1987-09-01), Harada
patent: 4892068 (1990-01-01), Coughlin
patent: 4898133 (1990-02-01), Bader
patent: 4991551 (1991-02-01), Terai et al.
patent: 5085184 (1992-02-01), Yamada et al.
patent: 5197422 (1993-03-01), Oleksy et al.
patent: 5317999 (1994-06-01), Kern et al.
patent: 5711264 (1998-01-01), Sezek et al.
patent: 5809958 (1998-09-01), Gracyalny
patent: 5816208 (1998-10-01), Kimura
patent: 5823153 (1998-10-01), Santi et al.
patent: 5904124 (1999-05-01), Poehlman et al.
patent: 595709

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mechanical compression and vacuum release does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mechanical compression and vacuum release, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mechanical compression and vacuum release will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2871497

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.