Mechanical attachment means used as electrical connection

Electrical connectors – Preformed panel circuit arrangement – e.g. – pcb – icm – dip,... – With provision to conduct electricity from panel circuit to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S065000

Reexamination Certificate

active

06287126

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to electrical connections. More particularly, the present invention relates to electrical connection means using mechanical structural elements which act to provide both electrical connections and balanced structural attachment forces between electronic components.
2. Background and Related Art
Various techniques exist in the prior art for making electrical connections between electronic components. These techniques typically use solder ball or solder column connections, wire bond pads or pin arrangements. Solder ball and solder column connections are known to have fatigue limitations. Fatigue limitations further limit the size of substrate that can be used for solder ball or solder column connections. Solder ball and solder column connections also have limitations because of the amount of space they require.
Pin arrangements, likewise, have space limitations. For example, the connectors to which the pins are attached utilize flexed metal compression bits as pin sockets. Such structure, in itself, requires a relatively large amount of space and additional space must also be allocated for the flexing movement upon pin insertion. Moreover, these pin sockets are typically soldered into the next level of assembly, using additional space for holes and/or surface lands.
Other forms of connectors, particularly when configured in large arrays, require application of a relatively large amount of force necessitating mechanical support structure which is bulky, cumbersome and costly.
In addition to the solder and pin connection techniques described above, various other connector techniques have been developed for connecting electronic components.
For example, U.S. Pat. No. 5,299,939 to Walker et al describes a spring array connector for interconnecting electronic components and circuit boards. This spring array connector requires a continuous application of an engaging force to maintain connection.
U.S. Pat. No. 3,585,569 to Moran describes a contact connector within a protective enclosure. The connector of Moran also requires continuous application of an engaging force to maintain a single electrical connection. Such force is provided by either an adhesive or hook-and-loop fastening system.
Another example of prior art connector techniques is that described in U.S. Pat. No. 4,239,046 to Ong. Ong describes an electrode connection arrangement for medical electronic devices which may easily be disconnected. To do this Ong also uses a hook-and-loop fastening system for making a single electrical connection.
Japanese patent JP52073394 to Akiyama describes a connector arrangement for use in a liquid crystal display. Application of engaging force to maintain a single electrical connection is provided in one embodiment by a hook-and-loop type fastening system.
U.S. Pat. No. 5,694,296 to Urbish et al describes a multipoint electrical connector having deformable J-hooks. A continuous external engaging force is required in Urbish et al to, again, makes but a single electrical connection.
U.S. Pat. No. 4,988,305 to Svenkeson et al and U.S. Pat. No. 5,059,128 to Murphy et al each describe a high density pin connector arrangement using “floating ring” engagers adapted to resiliently couple pairs of mating pins together.
The difficulty with these later examples of connectors resides in the fact that they either require the application of an external engaging force, are designed for a single connection or their inherent structure necessitates utilization of too much space to meet today's requirements for density of connectors.
SUMMARY OF THE INVENTION
In accordance with the teachings of the present invention, a high density electrical connection arrangement is provided using connection structure elements which act to provide both the electrical connection between respective points of opposing arrays of connection points of electronic components and the structural support to hold the opposing arrays in continuous electrical connection. One set of connection structure elements acts to provide tensile force to its opposing arrays of connection points of electronic components while another set of connection structure elements acts to provide compression force to its opposing arrays of connection points of electronic components.
The connection structure elements are of a shape and have mechanical properties which provide balanced forces at an equilibrium distance between the opposing arrays of connection points of electronic components. The balanced forces are large enough that electrical contact is maintained when the electronic components being joined are subjected to different orientations, impact shocks and vibrations consistent with electronic component usage. The elements are able to provide force sufficient to maintain electrical contact at distances which vary over a range larger than the variations in the heights of individual elements, combined with the variation in the heights of the connection points of the electronic components being joined, further combined with the variation in component-to-component distance which results when the electronic components are subjected to different orientations, impact shocks, and vibrations consistent with electronic component usage.
The connection structure elements that provide tensile force are of a shape which allows the elements of one opposing array to engage with or latch the corresponding tensile elements of the other opposing array. Such shapes may be provided, for example, by hook-to-hook and hook-to-loop type structures. The connection structure elements that provide compressive force are of a shape to create compressive forces sufficient to offset the tensile forces. The connection structure elements that provide the tensile and compressive forces are comprised of one or more shaped elements attached to or formed as an integral part of one of the electronic components to be joined or in contact with one or more shaped elements or contact pads attached to or formed as an integral part of the other electronic component.
Accordingly, it is an object of the present invention to provide a high density electrical connection arrangement.
It is a further object of the present invention to provide a high density electrical connection array having individual connection means which will not fatigue.
It is another object of the present invention to provide a high density electrical connection array which may be readily assembled or disassembled at room temperature.
It is another object of the present invention to provide a high density electrical connection array which may be reassembled after having been disassembled.
It is yet another object of the present invention to provide a high density electrical connection array which has a relatively high initial external engagement force for assembly but no external force to continue connection after assembly.
It is yet a further object of the present invention to provide a high density electrical connection array which utilizes simple connection structure elements some of which connection structure elements act to provide tensile force to hold opposing connection surfaces engaged while other connection structure elements act to provide compression force to balance the tensile force and maintain continuous electrical connection.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of a preferred embodiment of the invention, as illustrated in the accompanying drawing wherein like reference numbers represent like parts of the invention.


REFERENCES:
patent: 3585569 (1971-06-01), Moran
patent: 4239046 (1980-12-01), Ong
patent: 4589585 (1986-05-01), Long, Jr.
patent: 4988305 (1991-01-01), Svenkeson et al.
patent: 5059128 (1991-10-01), Murphy et al.
patent: 5230632 (1993-07-01), Baumberger et al.
patent: 5299939 (1994-04-01), Walker et al.
patent: 5694296 (1997-12-01), Urbish et al.
patent: 5774341 (1998-06-01), Urbish et al.
patent: 5926951 (1999-

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mechanical attachment means used as electrical connection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mechanical attachment means used as electrical connection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mechanical attachment means used as electrical connection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2528740

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.