Mechanical assembly with incompatible metallic materials

Winding – tensioning – or guiding – Reeling device – Fishing rod reel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C242S310000, C242S900000, C428S649000, C428S933000

Reexamination Certificate

active

06209816

ABSTRACT:

BACKGROUND OF THE INVENTION
A. Field of the Invention
The present invention relates to an assembly and in particular to an assembly made up of a plurality of parts made of materials having non-compatible ionization characteristics. The assembly may be used in a variety of mechanisms such as fishing reels and bicycle related mechanisms.
B. Description of the Related Art
Fishing reels that are configured to be mounted on a fishing rod for winding a fishing line may be divided into three general categories of reels: spinning reels; double bearing reels; and one-sided bearing reels. Such fishing reels usually include a reel main body to be mounted onto a fishing rod, and a spool mounted on the reel main body for winding a fishing line. In the double bearing reels and the one-sided bearing reels and spool are rotatably supported by the reel main body. Also, in the spinning reels, a spool is configured to move along an axis of the spool in forward and backward directions and is mounted onto the reel main body. Portions of the reel main body, the spool or the like of the fishing reel of each of the above mentioned types of fishing reels are generally made of an aluminum alloy, a synthetic resin, or the like, for the weight reduction purposes.
Portions of the various mechanisms on bicycles are similarly made of materials such as: aluminum alloys; synthetic resins, or the like, for the purpose of reducing the overall weight thereof.
The synthetic-resin-made parts can be manufactured inexpensively and are lightweight and are therefore advantageous for reducing the overall weight of fishing reels and bicycle parts. However, such resin-made parts have a small bending elastic modulus. Therefore, if the rigidity is to be maintained, the thickness of the part must be large and thus the overall weight of the part is increased. Further, it is difficult to obtain surface textures of the part which provide a desirable touch-feeling and difficult to provide a high grade appearance from such resin-made parts.
Aluminum-alloy-made parts are more expensive and larger in weight than the resin-made part, but the bending elastic modulus thereof is larger than that of the resin-made part. Therefore, the small thickness can be attained more easily than the resin-made part, and further an excellent touch-feeling and high grade appearance can be obtained easily. However, the bending elastic modulus is not as large as other metals such as steel, and if sufficient rigidity is to be maintained, the thickness of the part must be undesirably large and the resultant weight is large.
It is conceivable to use a magnesium alloy, which is small in weight and high in rigidity, for these parts. However, it is difficult to use the magnesium alloy for all of the parts because magnesium alloy is expensive, lacks adequate strength, etc. For this reason, other materials are increasingly being sought to use in manufacturing parts. Further, if a part made of magnesium-alloy is used in combination with the parts of other materials, there is a possibility that electrolytic corrosion may occur on the magnesium-alloy-made part due to the contact with the parts of the other materials. The electrolytic corrosion due to contact between two metals, for instance, iron parts with magnesium parts, is a result of incompatible ionization characteristics of the two materials. Specifically, the ionization energy of specific metals are such that some metals corrode when in contact with metals with an ionization energy that is not compatible.
SUMMARY OF THE INVENTION
An object of the present invention is to prevent electrolytic corrosion on a magnesium-alloy-made part even if the magnesium-alloy-made part is used in combination with parts made of other materials with incompatible ionization characteristics.
In accordance with one aspect of the present invention, a mechanical assembly includes a first part made of a magnesium alloy and a second part made of an aluminum alloy, which is in direct contact with the first part and mounted to the first part.
Preferably, the first part is a line winding spool for a fishing reel, and the second part is a spool shaft mounted to the spool.
In accordance with another aspect of the present invention, a mechanical assembly includes a first part made of a magnesium alloy and second part made of a first metal having an ionization energy that is smaller than the ionization energy of the magnesium alloy. The second part is mounted to the first part. A third part made of a second metal, having an ionization energy that is smaller than the magnesium alloy and larger than the ionization energy of the first metal, is in direct contact with the first part and is interposed between the first part and the second part.
Preferably, the second metal is one of the following groups of metals: aluminum alloys and zinc alloys.
In accordance with another aspect of the present invention, mechanical assembly includes a first part made of a magnesium alloy and a second part made of a metal having an ionization energy that is smaller than the ionization energy of the magnesium alloy. The second part is coupled to the first part. A third part made of an insulating material. The third part is in direct contact with the first part and is interposed between the first part and the second part.
Preferably, the second part is made of a stainless steel.
Preferably, the second part is made of titanium or a titanium alloy.
Preferably, the first part is a spool for a fishing reel, the second part is a spool shaft mounted to the spool, and the third part is a cylindrical sleeve interposed between the first part and the second part.
Preferably, the first part is formed by an injection molding process.
Preferably, the first part is formed using a diecasting molding process.
Preferably, a metal oxide film is formed on a surface of the first part, the metal oxide film being exposed to ambient air.
Preferably, a filling agent is inserted between adjacent ones of the first part, the second part and the third part.
Preferably, the filling agent is a liquid injectable using a capillary phenomenon.
Preferably, the filling agent is a liquified adhesive agent which solidifies after being insertion.
Preferably, the mechanical assembly is a fishing reel assembly configured for mounting to a fishing rod for winding a fishing line.
Preferably, the mechanical assembly is a bicycle mechanical device mounted to a bicycle.
Preferably, the fishing reel includes a reel main body mounted onto the fishing rod, the reel main body defining the first part. Further, a spool is mounted onto the reel main body for winding the fishing line therearound, the spool defining the second part.
Preferably, the fishing reel is a double bearing reel in which the spool is mounted onto sides of the reel main body so as to be rotatable about an axis of a direction intersecting an axial direction of the fishing rod.
Preferably, the fishing reel includes a reel body having a casing portion supporting the spool and a rod attaching portion formed integrally with the casing portion, and a lid portion removably fixed to the reel body.
Preferably, the mechanical assembly is a crank assembly from a bicycle.
In the present invention, since the first part made of the magnesium alloy contacts the second part made of the aluminum alloy, electrolytic corrosion hardly occurs even though these parts are directly contacted with each other. This is because the ionization energy of each metal is such that there is little likelihood of a reaction between the two metals. Hence, the two metals are compatible with one another having ionization characteristics that are compatible.
With the present invention being applied to a fishing reel, where the first part is a line winding spool for a fishing reel, and the second part is a spool shaft mounted to the spool, it is possible to construct the fishing reel with a reduced thickness and reduced weight while maintaining rigidity. Further, it is unlikely that the spool will undergo electrolytical corrosion since the spool shaft is made of an aluminum alloy t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mechanical assembly with incompatible metallic materials does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mechanical assembly with incompatible metallic materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mechanical assembly with incompatible metallic materials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2489588

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.