Mechanical actuator interface system for robotic surgical tools

Surgery – Instruments – Stereotaxic device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C074S490020

Reexamination Certificate

active

06491701

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to robotically assisted surgery, and more particularly provides surgical tools having improved mechanical and/or data interface capabilities to enhance the safety, accuracy, and speed of minimally invasive and other robotically enhanced surgical procedures.
In robotically assisted surgery, the surgeon typically operates a master controller to remotely control the motion of surgical instruments at the surgical site. The controller may be separated from the patient by a significant distance (e.g., across the operating room, in a different room, or in a completely different building than the patient). Alternatively, a controller may be positioned quite near the patient in the operating room. Regardless, the controller will typically include one or more hand input devices (such as joysticks, exoskeletol gloves, master manipulators, or the like) which are coupled by a servo mechanism to the surgical instrument. More specifically, servo motors move a manipulator or “slave” supporting the surgical instrument based on the surgeon's manipulation of the hand input devices. During an operation, the surgeon may employ, via the robotic surgery system, a variety of surgical instruments such as tissue graspers, needle drivers, electrosurgical cautery probes, etc. Each of these structures performs functions for the surgeon, for example, holding or driving a needle, grasping a blood vessel, or dissecting, cauterizing, or coagulating tissue.
This new method of performing robotic surgery has, of course, created many new challenges. One such challenge is that a surgeon will typically employ a significant number of different surgical instruments during each surgical procedure. The number of independent surgical manipulators will often be limited due to space constraints and cost. Additionally, patient trauma can generally be reduced by eliminating the number of tools used at any given time. More specifically, in minimally invasive procedures, the number of entry ports into a patient is generally limited because of space constraints, as well as a desire to avoid unnecessary incisions in the patient. Hence, a number of different surgical instruments will typically be introduced through the same trocar sleeve into the abdomen during, for example, laparoscopic procedures. Likewise, in open surgery, there is typically not enough room adjacent the surgical site to position more than a few surgical manipulators, particularly where each manipulator/tool combination has a relatively large range of motion. As a result, a number of surgical instruments will often be attached and detached from a single instrument holder of a manipulator during an operation.
Published PCT application WO98/25666, filed on Dec. 10, 1997 and assigned to the present assignee (the full disclosure of which is incorporated herein by reference) describes a Multicomponent Telepresence System and Method which significantly improves the safety and speed with which robotic surgical tools can be removed and replaced during a surgical procedure. While this represents a significant advancement of the art, as is often true, still further improvements would be desirable. In particular, each tool change which occurs during a surgical procedure increases the overall surgery time. While still further improvements in the mechanical tool/manipulator interface may help reduce a portion of this tool change time, work in connection with the present invention has shown that the mechanical removal and replacement of the tool may represent only one portion of the total interruption for a tool change. U.S. Pat. No. 5,400,267 describes a memory feature for electrically powered medical equipment, and is also incorporated herein by reference.
As more and more different surgical tools are provided for use with a robotic system, the differences between the tool structures (and the interaction between the tool and the other components of the robotic system) become more pronounced. Many of these surgical tools will have one or more degrees of motion between the surgical end effectors and the proximal interface which engages the tool to the holder of the manipulator. The desired and/or practicable ranges of motion for an electrosurgical scalpel may be significantly different than those of a clip applier, for example. Work in connection with the present invention has found that even after a tool is properly placed on the surgical manipulator, the time involved in reconfiguring the robotic system to take advantage of a different tool, and to perfect the master controller's effective control over the degrees of motion of the tool, may add significantly to the total tool change delay.
In light of the above, it would be desirable to provide improved robotic surgery tools, systems, and method. It would further be desirable to provide techniques for reducing the total delay associated with each tool change. It would be especially desirable if these enhanced, and often more rapid, robotic tool change techniques resulted in still further improvement in the safety and reliability of these promising surgical systems.
SUMMARY OF THE INVENTION
The present invention generally provides improved robotic surgical devices, systems, and methods for preparing for and performing robotic surgery. The robotic tools of the present invention will often make use of a memory structure mounted on a tool, manipulator arm, or movable support structure. The memory can, for example, perform a number of important functions when a tool is loaded on the tool manipulator: first, the memory can provide a signal verifying that the tool is compatible with that particular robotic system. Secondly, the tool memory may identify the tool-type (whether it is a scalpel, needle grasper, jaws, scissors, clip applier, electrocautery blade, or the like) to the robotic system so that the robotic system can reconfigure its programming to take full advantage of the tools' specialized capabilities. This tool-type data may simply be an identification signal referencing further data in a look-up table of the robotic system. Alternatively, the tool-type signal provided by the tool may define the tool characteristics in sufficient detail to allow reconfiguration of the robotic programming without having to resort to an external table. Thirdly, the memory of the tool may indicate tool-specific information, including (for example) measured calibration offsets indicating misalignment between the tool drive system and the tool end effector elements, tool life data (such as the number of times the tool has been loaded onto a surgical system, the number of surgical procedures performed with the tool, and/or the total time the tools has been used), or the like. The information may be stored in some form of non-volatile memory such as one-time programmable EPROM, Flash EPROM, EEPROM, battery-backed-up SRAM, or similar memory technology where data can be updated and retained in either a serial or random access method, or with any of a wide variety of alternative hardware, firmware, or software. The invention further provides improved engagement structures for coupling robotic surgical tools with manipulator structures.
In a first aspect, the invention provides a robotic surgical tool for use in a robotic surgical system. The robotic surgical system has a processor which directs movement of a tool holder. The tool comprises a probe having a proximal end and a distal end. A surgical end effector is disposed adjacent the distal end of the probe. An interface is disposed adjacent to the proximal end of the probe. The interface can be releasably coupled with the tool holder. Circuitry is mounted on the probe. The circuitry defines a signal for transmitting to the processor so as to indicate compatibility of the tool with the system.
The tool will often comprise a surgical instrument suitable for manipulating tissue, an endoscope or other image capture device, or the like. Preferably, the signal will comprise unique tool identifier data. The processor of the robotic s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mechanical actuator interface system for robotic surgical tools does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mechanical actuator interface system for robotic surgical tools, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mechanical actuator interface system for robotic surgical tools will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2955097

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.