Measuring chip for quantitative analysis of substances

Optics: measuring and testing – Of light reflection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S246000, C250S239000, C250S573000

Reexamination Certificate

active

06597456

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a measuring chip for use in, for instance, a surface plasmon resonance sensor for quantitatively analyzing a material in a sample utilizing generation of surface plasmon.
2. Description of the Related Art
In metal, free electrons vibrate in a group to generate compression waves called plasma waves. The compression waves generated in a metal surface are quantized into surface plasmon.
There have been proposed various surface plasmon resonance sensors for quantitatively analyzing a material in a sample utilizing a phenomenon that such surface plasmon is excited by light waves. Among those, one employing a system called “Kretschmann configuration” is best known. See, for instance, Japanese Unexamined Patent Publication No. 6(1994)-167443.
The plasmon resonance sensor using the Kretschmann configuration basically comprises a dielectric block shaped, for instance, like a prism, a metal film which is formed on one face of the dielectric block and is brought into contact with a sample, a light source emitting a light beam, an optical system which causes the light beam to enter the dielectric block so that the light beam is reflected in total internal reflection at the interface of the dielectric block and the metal film and various angles of incidence of the light beam to the interface of the dielectric block and the metal film including an angle of incidence at which surface plasmon is generated can be obtained, and a photodetector means which is able to detect the intensity of the light beam reflected in total internal reflection at the interface and detect a state of surface plasmon resonance.
In order to obtain various angles of incidence of the light beam to the interface, a relatively thin incident light beam may be caused to impinge upon the interface while deflecting the incident light beam or a relatively thick incident light beam may be caused to impinge on the interface in the form of convergent light or divergent light so that components of the incident light beam impinge upon the interface at various angles. In the former case, the light beam which is reflected from the interface at an angle which varies as the incident light beam is deflected may be detected by a photodetector which is moved in synchronization with deflection of the incident light beam or by an area sensor extending in the direction in which reflected light beam is moved as a result of deflection. In the latter case, an area sensor which extends in directions so that all the components of light reflected from the interface at various angles can be detected by the area sensor may be used.
In such a plasmon resonance sensor, when a light beam impinges upon the interface at a particular angle of incidence &thgr;sp not smaller than the angle of total internal reflection, evanescent waves having an electric field distribution in the sample in contact with the metal film are generated and surface plasmon is excited in the interface between the metal film and the sample. When the wave vector of the evanescent waves is equal to the wave number of the surface plasmon and wave number matching is established, the evanescent waves and the surface plasmon resonate and light energy is transferred to the surface plasmon, whereby the intensity of light reflected in total internal reflection at the interface of the dielectric block and the metal film sharply drops. The sharp intensity drop is generally detected as a dark line by the photodetector.
The aforesaid resonance occurs only when the incident light beam is p-polarized. Accordingly, it is necessary to set the light beam to impinge upon the interface in the form of p-polarized light.
When the wave number of the surface plasmon can be known from the angle of incidence &thgr;sp at which the phenomenon of attenuation in total internal reflection (ATR) takes place, the dielectric constant of the sample can be obtained. That is,
K
sp

(
ω
)
=
ω
c

ϵ
m

(
ω
)

ϵ
s
ϵ
m

(
ω
)
+
ϵ
s
wherein K
sp
represents the wave number of the surface plasmon, &ohgr; represents the angular frequency of the surface plasmon, c represents the speed of light in a vacuum, and ∈ m and ∈ s respectively represent the dielectric constants of the metal and the sample.
When the dielectric constant ∈ s of the sample is known, the concentration of a specific material in the sample can be determined on the basis of a predetermined calibration curve or the like. Accordingly, a specific component in the sample can be quantitatively analyzed by detecting the angle of incidence &thgr;sp at which the intensity of light reflected in total internal reflection from the interface of the prism and the metal film sharply drops.
In the conventional plasmon resonance sensor of the type described above employing the system described above, it is practically necessary to change sample by sample the metal film to be brought into contact with the sample. Conventionally, the metal film is fixedly formed on a flat and thin dielectric plate as a unit and the unit is removably integrated with a prism-like dielectric block which functions as an optical coupler for causing total internal reflection. The prism-like dielectric block is fixedly provided with respect to the optical system and the unit of the metal film and the dielectric plate is changed sample by sample as a measuring chip.
As a similar apparatus utilizing the phenomenon of attenuation in total internal reflection (ATR), there has been known a leaky mode sensor described in, for instance, “Spectrum Researches” Vol.47, No.1 (1998), pp21 to 23 & pp26 and 27. The leaky mode sensor basically comprises a dielectric block shaped, for instance, like a prism, a clad layer which is formed on one face of the dielectric block, an optical waveguide layer which is formed on the clad layer and is brought into contact with a sample, a light source emitting a light beam, an optical system which causes the light beam to enter the dielectric block at various angles of incidence so that total internal reflection conditions are satisfied at the interface of the dielectric block and the clad layer, and a photodetector means which is able to detect the intensity of the light beam reflected in total internal reflection at the interface and detect an excited state of waveguide mode, i.e., attenuation in total internal reflection (ATR).
In the leaky mode sensor with this arrangement, when the light beam is caused to impinge upon the clad layer through the dielectric block at an angle not smaller than an angle of total internal reflection, only light having a particular wave number and impinging upon the optical waveguide layer at a particular angle of incidence comes to propagate through the optical waveguide layer in a waveguide mode after passing through the clad layer. When the waveguide mode is thus excited, almost all the incident light is taken in the optical waveguide layer and accordingly, the intensity of light reflected in total internal reflection at the interface of the dielectric block and the clad layer sharply drops. That is, attenuation in total internal reflection occurs. Since the wave number of light to be propagated through the optical waveguide layer in a waveguide mode depends upon the refractive index of the sample on the optical waveguide layer, the refractive index and/or the properties of the sample related to the refractive index can be detected on the basis of the angle of incidence at which the attenuation in total internal reflection occurs.
Also in the leaky mode sensor, it is possible to fix a dielectric block with respect to the optical system, to form the clad layer and the optical waveguide layer on another dielectric block to form a measuring chip, and to change the measuring chip sample by sample.
However, when the conventional measuring chips are used, the dielectric blocks have to be integrated with each other by way of refractive index matching fluid in order to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Measuring chip for quantitative analysis of substances does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Measuring chip for quantitative analysis of substances, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Measuring chip for quantitative analysis of substances will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3029392

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.