Measuring a trans-septum bio-impedance in an active...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S020000, C607S028000, C607S122000, C607S008000, C600S508000, C600S547000

Reexamination Certificate

active

06725091

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to “active implantable medical devices” as such devices are defined by the Jun. 20, 1990 directive 90/385/CEE of the Council of the European Communities, more particularly to pacemaker, defibrillator and/or cardiovertor devices that are able to deliver to the heart stimulation pulses of low energy for the treatment of heartbeat rate disorders. The invention is more particularly directed to the prostheses known as “multisite”, in which respective electrodes are placed in a plurality of distinct respective cardiac sites comprising at least one ventricular site and one atrial site. This prosthesis can be of the “triple chamber” (right atrial stimulation and double ventricular stimulation) or “quadruple chamber” (double atrial stimulation and double ventricular stimulation) type.
BACKGROUND OF THE INVENTION
The control of stimulation implies making an adjustment of various control parameters, such as the stimulation frequency, the atrio-ventricular delay (AVD), or the inter-ventricular delay in the case of a biventricular stimulation. These various parameters are typically adjusted according to signals delivered by sensors, for example, a minute ventilation (MV) sensor. The minute ventilation is a factor which is representative of the instantaneous metabolic needs of the patient. This factor, in a known manner, is evaluated by measurement of a trans-pulmonary bioimpedance, i.e., between the heart and the case of pacemaker, where the case is located in the top of the thorax.
Another factor which is desirable to know is the cardiac flow. It can be interesting, particularly with a multisite pacemaker, to obtain an indication of this flow and thus of the fraction of ejection. The fraction of ejection is the hemodynamic reference parameter used to optimize stimulation on the various cardiac sites. The cardiac flow can be evaluated by measurement of the intracardiac pressure, for example, as proposed in the published application WO-A-99/34863 (Pacesetter AB), but at an expense of requiring a specific probe incorporating a piezoelectric sensor and particular associated electronics to condition the signals resulting from this sensor, to convert them and transmit them to the microprocessor of the pacemaker for processing and use.
Another parameter correlated with the cardiac flow is the transvalvular impedance, a parameter that is generally measured on the right heart, for example, as proposed in U.S. Pat. No. 5,154,171 (Chirife). This document proposes to take the bio-impedance measurement by injecting a current pulse between a ventricular site and an atrial site, and collecting a differential potential between these same two sites. In practice, however, it is noted that this configuration (a bipolar configuration of two electrodes) of injection/collection appears sensitive to the movement of the probes containing the electrodes, and does not allow a reliable and precise measurement of the impedance and of the fraction of ejection.
OBJECTS AND SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to overcome the foregoing disadvantages by proposing an improved configuration for measuring the intracardiac impedance and procuring a more reliable and more precise measure of the fraction of ejection, in particular for use in controlling the inter-ventricular delay (in the case of a biventricular stimulation), the stimulation frequency, and/or the atrio-ventricular delay.
Broadly, the present invention relates to a medical device of the known general type, for example, a device according to U.S. Pat. No. 5,154,171 mentioned above, i.e., in which electrodes are to be placed in a plurality of distinct respective sites comprising at least one left ventricular site and one right atrial site, or at least one right ventricular site and one left atrial site. These electrodes are to be connected to a collection (detection) circuit, able to collect (detect) cardiac signals including a potential of depolarization, and to a stimulation circuit, able to apply stimulation pulses to at least certain of the aforesaid sites. The stimulation circuit and the collection circuit typically are located inside the case of the device. The device of the present invention also comprises a means for evaluating the cardiac flow by measurement of the intracardiac bio-impedance. It should be understood that the term “site” is used synonymously with the term cavity.
In a characteristic manner of the invention, the means for evaluating the cardiac flow further comprises means for measuring a trans-septum bio-impedance, which measurement is made either between the left ventricle and right atrium, or between the right ventricle and the left atrium. The trans-septum bio-impedance measuring means operates by injecting a current between an atrial site and a ventricular site, and collecting a differential potential between an atrial site and a ventricular site.
In a first embodiment, the means for measuring the trans-septum impedance operates the aforementioned current injection between a common ventricular site and a first atrial injection site, and operates the aforementioned collection of the differential potential between the aforementioned common ventricular site and a second atrial collection site.
In another embodiment, the means for measuring the trans-septum bio-impedance operates the aforementioned current injection between a common atrial site and a first ventricular injection site, and operates the aforementioned collection of the differential potential between the aforementioned common atrial site and a second ventricular collection site.
In the foregoing embodiments, in the cavity of the common site, preferably the same electrode is used for the injection and the collection, and in the cavity of the non-common sites, preferably different electrodes in the same cavity are used for the injection and collection, which different electrodes are more preferably disposed on the same lead.
Preferably, the device also includes means for varying the stimulation pulse frequency is applied, means for varying the atrio-ventricular delay applied, and/or means for varying the inter-ventricular delay applied, with respect to the right and left ventricles, all of these means operating in response to the measured trans-septum bio-impedance to vary the parameter in a direction towards an improvement of the cardiac flow.
In addition, the device optionally includes means for detecting ventricular arrhythmias and means for discriminating between, on the one hand, patient effort (i.e., activity above a rest level of activity) accompanied by an elevated heart rate, and, on the other hand, disorders of the heart rate accompanied by a fall of the cardiac flow as detected by the means for measuring the trans-septum bio-impedance.


REFERENCES:
patent: 5154171 (1992-10-01), Chirife
patent: 5388586 (1995-02-01), Lee et al.
patent: 5501702 (1996-03-01), Plicchi et al.
patent: 5522860 (1996-06-01), Molin et al.
patent: 5649965 (1997-07-01), Pons et al.
patent: 5697960 (1997-12-01), Molin et al.
patent: 5702426 (1997-12-01), Pons et al.
patent: 5902325 (1999-05-01), Condie et al.
patent: 5995870 (1999-11-01), Cazeau et al.
patent: 6539261 (2003-03-01), Dal Molin
patent: 6556866 (2003-04-01), Dal Molin et al.
patent: 6591131 (2003-07-01), Dal-Molin
patent: 6604002 (2003-08-01), Molin
patent: O 925 806 (1999-06-01), None
patent: 99/30777 (1999-06-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Measuring a trans-septum bio-impedance in an active... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Measuring a trans-septum bio-impedance in an active..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Measuring a trans-septum bio-impedance in an active... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3263717

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.