Means for inputting characters or commands into a computer

Image analysis – Pattern recognition – On-line recognition of handwritten characters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S188000, C382S189000, C382S202000, C382S313000, C382S314000, C178S018010, C178S018030, C345S173000, C345S179000, C345S215000

Reexamination Certificate

active

06647145

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention concerns means for inputting characters or commands into a computer or other information receiving device without a keyboard or the like using the automatic skills of handwriting.
2. Description of the Related Art
The present day computer keyboard was initially designed to operate a typewriter. The keys were operated as levers to stamp a die onto paper to print each character. Each key carried two characters one above the other, the lower case character being reproduced by normal depression of a key onto paper with an ink ribbon therebetween and the upper case character being obtained by shifting the entire paper carriage or die set so that the impact occurs with the upper character die impression rather than the lower. Punctuation and special characters were obtained by shifting the numbers or with extra keys.
The printing method is fundamentally the same as in a printing press but the purpose of a typewriter is very different from the purpose of a press. Printing, of course, allows publication of a manuscript and the reproduction of many identical copies of the original manuscript without the effort of handwriting each copy.
The typewriter came into being with the growth of modern commerce and the need for legible business letters. At that time (and indeed presently), handwriting was highly personal and showed great variation. from one person to another. This made handwritten letters, agreements, contracts and other legal documents potentially ambiguous or unclear in meaning. It is this complexity of handwriting which mitigates against current approaches to computer analysis of handwriting.
Variations in handwriting represent simple information embedded in a mass of redundant detail. In modern information and communications, the approach to redundancy in a pattern is to throw large computing power into analysis and recognition. Computer equipment for analysing handwriting is available but does require considerable computing power and hence is relatively expensive and often cannot recognise the handwriting quickly enough, in real time, causing delays to the inputting process.
The analysis employed in such methods depends upon the extraction of salient features from the pattern of handwriting presented to the device and its software. It should be noted that the salient features chosen are often complex and any one may be specific to one character or letter. This implies that the set of such features is large and complex. In addition there exists a number of different ways in which a particular character can be drawn, each of which may contain different salient features. Add to this the difficulty that even with a single way of drawing a particular character, the actual pattern drawn will vary greatly from one person to another. The result is that such approaches to the computer recognition of handwriting have so far been limited in their success and often require a learning process in which the software adjusts to the handwriting of the user or the user learns a way of writing which allows the system to work. The overhead in terms of programme size and computing power required is often expensive and impractical in the application to hand-held computers or personal digital assistants particularly at the smaller end of the scale of size, power and cost (the high volume market of pocket. databanks, diaries, organisers and the like).
Another approach to data input to a computer from finger movements is embodied in systems that require the user to draw each character in a particular way, devoid of ambiguity. This results in a sort of short-hand code which has to be learned by the user. The short-hand forms are often not familiar or readily recognisable as the characters they represent. The result is a commercially successful system but some way removed from natural writing and which needs to be learned and practised.
Another difficulty associated with the current approaches to handwritten input to a computer is the complexity and expense of the hardware required for the sensing of the finger movements. In both the approaches described above, the moment-by-moment and point-by-point form of the motion of the fingers must be sensed, digitised and transmitted to the processor carrying out the analysis and recognition. In many devices currently available this function is performed by a pen or stylus moved by the fingers across a touch sensitive screen. The finger motions are detected by this device and transmitted to the processor, which causes an image of the movement to be displayed on the same screen. Such a complex input device is expensive and can represent a significant proportion of the cost of for example a hand-held computer.
Thus, it is not easy to input hand generated information into a computer in a direct manner.
The printed word, on the other hand, is clear and unambiguous. Every character can be standard in form and scale and easy to read. The printing press sets up its text as a block of lead type which is impressed onto one or more paper pages at a time. This allows the rapid production of many copies of a page. The typewriter, however, needed to be flexible at the level of each character, not at the level of each page. Hence, one key (one print operation) per character. Therefore, the present day keyboard has 60 to 70 keys.
Keyboards which deliver the component parts of each character (one part to one key) have been proposed. Because the form of printed numbers and letters can be simplified (they can be displayed with 7 and 14 segment displays) such a keyboard would only need a relatively small number of keys compared to the standard keyboard. However, such keyboards have not been successful possibly due to the barrier of having to learn a new way of typing which overrides the advantages of such a simple keyboard. It is to be noted that during conventional touch-typing, although the fingers of both hands cover the keys, only one finger is working at a time. With character constructing keyboards as mentioned above, a number of fingers must be employed simultaneously to print a character and so co-ordination skills must be learned by the user. This means that the typing skill called for is less natural than the one-key one-character scheme used by conventional keyboards.
SUMMARY OF THE INVENTION
An object of this invention is to provide means for inputting hand generated information into a computer.
According to one aspect of the invention there is provided means for inputting a hand generated character into a computer comprising means for drawing a character, means for abstracting a sequence of signals as the character is drawn corresponding to components of the character to produce a code representative of that character and means for recognising that code, whereby the character is inputted to the computer.
The signal abstracted preferably corresponds to a quantization of motion as the character is drawn. The signal abstracted may correspond to a change in direction as the character is drawn and/or may correspond to movement beyond one or more defined thresholds in a particular direction as the character is drawn and/or a signal abstracted may correspond to a change in position of the drawing means from one defined area to another defined are on a drawing surface.
According to a second aspect of the invention there is provided means for converting movement or force generated in reproducing a character into a coded signal corresponding to one or more elements of said movement or force that are indicative of the character, whereby the character is recognisable from said coded signal.
According to a third aspect of the invention there is provided a device for converting movement of or force applied to at least a part of said device, said movement or force being imparted by reproduction of a character, into a coded signal corresponding to one or more elements of said movement or force that are indicative of the character, whereby the character is recognisable from said coded signal.
According to a fourth

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Means for inputting characters or commands into a computer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Means for inputting characters or commands into a computer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Means for inputting characters or commands into a computer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3141239

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.