Materials collection system and uses thereof

Surgery – Instruments – Orthopedic instrumentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S102000

Reexamination Certificate

active

06325806

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to fields of use where cuttings are collected from the action of a cutting tool. Instrumentation and methods are provided for industrial and medical applications. In particular, the present invention relates to surgical instrumentation and a method of use that allows skeletal tissue collection. Furthermore, collected skeletal tissue may be processed and transplanted, preferably within the donor subject to provide an autologous transplant.
BACKGROUND OF THE INVENTION
In the production of machine parts to meet standard requirements for the U.S. military, the U.S. Food and Drug Administration, and the International Organization for Standards; cuttings resulting from machining processes are collected and returned to inventory control to account for all material issued to the shop floor. To account for all issued materials; scrap cuttings, residual bulk material, and machined parts are weighed to ensure that no unidentified materials are uncontrolled on the shop floor. Scrap cuttings from high-grade medical or military specification materials are expensive and, therefore, cost effective to recycle. In another example of collection of cuttings, jewelers collect and recycle materials that fall in the work area during the machining of precious materials such as gold and silver.
The surgical harvest of bone, with or without marrow components, is a further example of the need for instrumentation for collection of cuttings. Harvested bone material is used in treatment of bone defects and diseases. The goal of therapeutic transplantation of bone and bone marrow products is the induction or augmentation of bone growth and repair at a defect site or around an implant site.
Autogenous bone grafts are the gold standard against which all graft materials are measured. Acquisition of fresh autogenous bone transplant material provides all naturally available mitogens and growth factors in physiologic concentrations, viable mesenchymal and progenitor cell populations, and natural bone matrix. Autograft bone has greater osteogenic capacity than either allograft bone (tissue from donors of the same species) or xenograft bone (tissue from donors of different species). In comparison to frozen allogenic and decalcified allogenic bone, fresh autogenic cancellous bone grafts lead to healing in most instances. Autogenous bone grafts avoid the potential immunologic and infectious complications associated with allograft materials.
Attempts to reduce morbidity associated with cancellous bone harvest have used minimally invasive surgical techniques, including use of cylindrical osteotomes that allow for the harvest of several bone plugs obtained through a single initial cortical entrance. This technique is slow and obtainable bone volume is limited. Bone biopsy trephines offer an advantage in that no muscle or ligamentous attachments are disturbed, but again, the technique limits harvest volume and shape, and collection of the harvested material is tedious.
Other techniques have used square- or rectangular-shaped bone windows that contribute to major donor-site morbidity. Angular defects produced in the formation of common bone windows weaken bone structure because fractures can be propagated from the corners of such defects.
Devices and systems for bone cutting, and bone marrow tissue aspiration and processing for transplantation have been previously described. Bonutti (U.S. Pat. No. 5,269,785, U.S. Pat. No. 5,403,317) and Thimsen et al. (U.S. Pat. No. 4,649,919, U.S. Pat. No. 4,844,064) relate to orthoscopic tissue removal. Johnson (U.S. Pat. No. 5,443,468) and Leuenberger (U.S. Pat. No. 4,111,208) relate to drill bits and drill motor attachments; Abtopckomy (SU 1644923 A1), Zelenov (SU 1066578), and Michaelson (U.S. Pat. No. 5,451,277, and WO 9505123) relate to a bone tissue cutting device; and Chin (U.S. Pat. No. 5,385,570) relates to a surgical cutting instrument with a recess for collecting chips of material. Bone marrow transplant methods and apparatus were described by Werner (U.S. Pat. No. 5,407,425), Gillis (U.S. Pat. No. 5,199,942) and Altshuler (U.S. Pat. Nos. 4,486,188 and 4,481,946).
Grant (U.S. Pat. No. 3,466,693) relates to the active wiping of drill pipe for oil field use, and Dillard (U.S. Pat. No. 4,991,452) relates to a sampler for hazardous solid materials.
The apparatus of Soviet Patent SU 1725858 lacks a closed channel between bone chip removal channels of the needle and the spring-loaded tube, the needle is fixed, and further, the device is completely dependent upon use with a needle.
Existing cuttings collection instrumentation fails to take into account the need for custom design for specific applications, the need for facile quantitation of collected material, the need for efficient transport to a second site, or the need for aseptic conditions or environments having lowered oxygen levels, for example. In particular, existing skeletal harvesting instrumentation and transplanting methods have encountered significant problems due to material characteristics and bone material harvest techniques employed. Existing methods and associated deficiencies include: 1) genetically foreign bone and bone matrix often elicit an inflammatory response and immunogenic rejection, 2) freeze-dried bone implants from human donors are slow to vascularize and pose unacceptable risks of postoperative complications including disease transmission, 3) second-site surgery in the patient to obtain autografts often result in high morbidity and complications, 4) cortical bone implants are difficult to shape and conform to a defect site, 5) present bone harvest instrumentation and equipment are limited to trephines and curettes and limit quantity and quality while requiring second-site surgery, and 6) a deficiency exists in present synthetic bone matrix materials, such as compositions of calcium phosphate and calcium carbonate, silica glass, copolymers of polylactic and polyglycolic acid, and sea coral.
Because these prior art techniques are not completely satisfactory, the present inventors have searched for improvements and provide the invention described herein.
SUMMARY OF THE INVENTION
The present invention provides an instrument and methods for the collection of cuttings that result from the cutting action of tools. The instrument comprises a tip adapted for use with a cutting tool, and a collection chamber attachable to the tip for collecting and holding cuttings. When a cutting tool is inserted through the instrument, and when in use, the instrument acts independently from the cutting tool by allowing cutting tool rotation along its longitudinal axis and translation of the cutting tool in and out through the instrument so as to channel, pull, or fling cuttings for accumulation in the collection chamber.
By “adapted for use with a cutting tool” is meant that the tip serves as a cutting tool guide, and can further serve as a cutting tool bearing. The tip has a bore for fitting to a cutting tool having a flute. When fitted with a cutting tool having a flute, the tip and the flute form an enclosed channel. Aspects of the invention that cause the accumulation of cuttings in the collection chamber include channeling from the action of a cutting tool, pulling due to translation of the cutting tool, and flinging due to centripetal forces caused by rotation of the cutting tool. An enclosed channel between tip
10
and a flute of a cutting tool as shown in
FIG. 1
of the present specification necessarily provides the forces of axial pumping to move material. Axial pumping includes radial forces, translational forces, and use of suction.
An embodiment of the instrument further comprises a cap attachable to the collection chamber, the cap adapted for use with a cutting tool. By “adapted for use with a cutting tool” is meant that the cap serves as a cutting tool guide, and further may serve as a cutting tool bearing. A cap may have a bore for fitting to a cutting tool, it may have a further attachment for mixing contents of the attachment with cuttings in the collect

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Materials collection system and uses thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Materials collection system and uses thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Materials collection system and uses thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2591195

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.