Materials and methods for detection of Oxalobacte formigenes

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S091100, C435S091200, C536S024100, C536S024330, C536S023700

Reexamination Certificate

active

06214980

ABSTRACT:

FIELD OF INVENTION
The present invention relates to novel assay methods and devices for determining the presence or concentration of oxalate in a sample; Oxalobacter genes encoding enzymes required for the catabolism of oxalate; and materials and methods for detecting and identifying
Oxalobacter formigenes
in a sample.
BACKGROUND OF THE INVENTION
Oxalic acid (Oxalate) is a highly toxic natural by-product of catabolism in vertebrate animals and many consumable plants. Unfortunately, a significant portion of humans are unable to properly metabolizing oxalate, a condition which may result in the formation of kidney stones in those persons. It is estimated that 70% of all kidney stones are composed of some amount of oxalate. Approximately 12 percent of the U.S. population will suffer from a kidney stone at some time in their lives, and the incidence is rising not only in the United States, but also in Sweden and Japan (Curhan, 1993). Moreover, although a healthy person breaks down or excretes sufficient quantities of oxalate to avoid excessive accumulation of oxalate in the tissues, a number of disease states are known to be associated with malfunctions of oxalate metabolism, including pyridoxine deficiency, renal failure and primary hyperoxaluria, a metabolic genetic disorder that results in the excessive deposition of oxalate in the kidneys.
Persons suffering from and at risk for developing kidney stones, as well as patients with lipid malabsorption problems (e.g., sprue, pancreatic insufficiency, inflammatory intestinal disease, bowel resection, etc.), tend to have elevated levels of urinary oxalate, a fact that has been exploited as a means for identifying individuals at risk. While elevated levels of oxalate may be present in urine, detecting elevated levels of oxalate in serum has not been routine due to the difficulty in detecting the low levels of oxalate present in serum.
Most previous methods for measuring oxalate in a biological sample first require the isolation of the oxalate by precipitation, solvent extraction, or an ion-exchange absorption (Hodgkinson, 1970). Quantitation of the isolated oxalate may be determined by any one of several methods including colorimetry, fluorometry, gas-liquid chromatography or isotope dilution techniques. Because many of the oxalate isolation techniques used in these analytical methods are not quantitative, it is normally necessary to correct for the low recovery of oxalate by adding a
14
C-labeled oxalic acid internal standard, which further complicates the analytical method. All these methods are laborious, and consequently expensive because of the amount of skilled laboratory technician time which must be employed. In addition, isolation of the oxalate may require relatively large sample volumes for starting material.
Recently, several advances in the detection and quantitation of oxalate have been made through the use of (a) oxalate degrading enzymes and (b) high performance liquid chromatography. One commercially-available enzymatic test (Sigma Chemical Company, St. Louis, Mo.) employs oxalate oxidase to oxidize oxalate to carbon dioxide and hydrogen peroxide. The hydrogen peroxide produced can then be measured colorimetrically in a second enzymatic reaction in the presence of peroxidase.
In another enzymatic method for measuring oxalate, oxalate decarboxylase is used to convert oxalate to carbon dioxide and formate. The resultant carbon dioxide can be measured manometrically, by the pH change in a carbon dioxide trapping buffer or by the color change in a pH indicator buffer. Whatever method of carbon dioxide assay is adopted, the time required for diffusion and equilibration of carbon dioxide is much longer than is desirable for a rapid analytical method.
Alternatively, the formate produced by the action of oxalate decarboxylase can be assayed with formate dehydrogenase in an NAD/NADH coupled reaction, as described in Costello, 1976 and Yriberri, 1980. This method is both cumbersome and time-consuming because oxalate decarboxylase and formate dehydrogenase differ in their optimum pH requirements, thus necessitating a pH adjustment during the analysis.
Another commercially available enzymatic test (Boehringer Mannheim) cleaves oxalate to formate and carbon dioxide, then oxidizes the formate to bicarbonate by NAD in the presence of the enzyme formate dehydrogenase. The amount of NADH is determined by means of its absorbance at 334, 340, or 365 nm. Another test (“STONE RISK” by Mission Pharmacal) measures oxalate as a part of a battery of tests for kidney stones.
Oxalobacter formigenes
is a recently discovered, oxalate-degrading obligately anaerobic bacterium residing primarily in the intestines of vertebrate animals, including man (Allison et al., 1986). Although the first isolates of
O. formigenes
were cultured from sheep rumen (Dawson et al., 1980), additional strains have now been isolated from cecal contents of rats, guinea pigs and pigs (Argenzio et al., 1988, Daniel et al., 1987), fecal samples from man (Allison et al., 1985), and anaerobic aquatic sediments (Smith et al., 1985). This bacterium is unique among oxalate-degrading organisms having evolved a total dependence on oxalate metabolism for energy (Dawson et al., 1980). Recent evidence suggests that
Oxalobacter formigenes
has an important symbiotic relationship with vertebrate hosts by regulating oxalic acid absorption in the intestine as well as oxalic acid levels in the plasma (Hatch and Freel, 1996). Studies by Jensen and Allison (1994) comparing various
O. formigenes
isolates revealed only limited diversity of their cellular fatty acids, proteins, and nucleic acid fragments. Based on these comparisons, strains of
O. formigenes
have been divided into two major subgroups. In general, group I strains have shown limited intragroup diversity, while group II strains have shown greater intragroup diversity.
Special conditions are required to culture
O. formigenes
and their detection is based generally on the appearance of zones of clearance of calcium oxalate crystals surrounding colonies (Allison et al., 1986). Assays based on the appearance of zones of clearance of calcium-oxalate crystals surrounding bacterial colonies (Allison et al., 1985) or degradation of oxalate in culture media measured by calcium-chloride precipitation (Dawson et al., 1980) fail to confirm the oxalate-degrading bacteria as Oxalobacter.
As illustrated above, the currently existing assays for oxalate suffer from numerous problems, including cost, inaccuracy, reliability, complexity, and lack of sensitivity. Accordingly, it is an object of the subject invention to provide a simple, accurate, and sensitive assay for the detection of low levels of oxalate in a biological sample.
The current methods for culturing and identifying the presence of
Oxalobacter formigenes
are technically demanding and time consuming, and therefore, are not suitable for rapid and specific identification of
O. formigenes,
particularly for clinical diagnostics. Accordingly, another object of the subject invention is to provide a rapid, accurate polynucleotide probe-based assay for the detection of
O. formigenes.
BRIEF SUMMARY OF THE INVENTION
The subject invention concerns the cloning, sequencing, and expression of the formyl-CoA transferase (frc) and the oxalyl-CoA decarboxylase (oxc) genes of
Oxalobacter formigenes,
and the use of the enzymes to detect the presence of oxalate in a sample. The assay of the subject invention provides, for the first time, a rapid, sensitive method to detect even very low concentrations of oxalate in biological samples. Advantageously, the biological samples in which oxalate can be detected include both urine and serum samples. The enzyme system used according to the subject invention converts oxalate to carbon dioxide and formate. In a preferred embodiment of the subject invention, the production of formate is then measured colorimetrically. This assay provides a sensitive, accurate and convenient means for detecting oxalate.
A further aspect of the subject invention is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Materials and methods for detection of Oxalobacte formigenes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Materials and methods for detection of Oxalobacte formigenes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Materials and methods for detection of Oxalobacte formigenes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2547943

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.