Fishing – trapping – and vermin destroying – Vermin destroying – Insect
Reexamination Certificate
2001-11-16
2004-07-27
Mehta, Ashwin (Department: 1638)
Fishing, trapping, and vermin destroying
Vermin destroying
Insect
C514S002600, C514S012200
Reexamination Certificate
active
06766613
ABSTRACT:
BACKGROUND OF INVENTION
A longstanding worldwide demand exists for new, effective, environmentally friendly, and safe means to control pests that damage agriculture or serve as disease vectors. Agriculture costs incurred by pests exceed billions of dollars annually in decreased crop yields, reduced crop quality, increased harvesting costs, pesticide application costs, and negative ecological impact. In addition to agriculture pests, many blood-feeding insects are vectors for pathogenic microorganisms that threaten human and animal health, or are annoying at the least. As in the case of agriculture pests, direct and intangible costs incurred by blood-feeding pests concern pesticide safety hazards to humans and animals, bioaccumulation and environmental incompatibility, and synthesis and application costs.
Almost all field crops, nursery and horticulture plants, and commercial farming areas are susceptible to attack by one or more pests. Particularly problematic are Coleopteran and Lepidopteran pests. An example of a Lepidopteran pest is the hornworm larva of
Manduca sexta
, and an example of a Coleopteran pest is the Colorado potato beetle,
Leptinotarsa decemlineata
. Vegetable and cole crops, lentils, leafy vegetables, melons, peppers, potatoes and related tubers, tomatoes, cucumbers and related vine crops, as well as a variety of spices are sensitive to infestation by one or more pests including loopers, armyworms, moth larvae, budworms, webworms, earworms, leafeaters, borers, cloverworms, melonworms, leafrollers, various caterpillars, fruitworms, hornworms, and pinworms. Likewise, pasture and hay crops such as alfalfa, pasture and forage grasses and silage are often attacked by a variety of pests including armyworms, alfalfa caterpillars, European skipper, a variety of loopers and webworms, as well as yellowstriped armyworms.
Fruit (including citrus), nut, and vine crops are susceptible to attack by a variety of pests, including sphinx moth larvae, cutworms, skippers, fireworms, leafrollers, cankerworms, fruitworms, girdlers, webworms, leaffolders, skeletonizers, shuckworms, hornworms, loopers, orangeworms, tortrix, twig borers, casebearers, spanworms, budworms, budmoths, and a variety of caterpillars and armyworms.
Field crops are targets for infestation by insects including armyworm, asian and other corn borers, a variety of moth and caterpillar larvae, bollworms, loopers, rootworms, leaf perforators, cloverworms, headworms, cabbageworms, leafrollers, podworms, cutworms, budworms, hornworms, and the like. Pests also frequently feed upon bedding plants, flowers, ornamentals, vegetables, container stock, forests, fruit, ornamental, shrubs and other nursery stock. Even turf grasses are attacked by a variety of pests including armyworms and sod webworms.
For the past 50 years growers, health officials, and the public have depended on chemical pesticides for controlling a variety of pests. However, environmental experts, health officials, and the public have become concerned about the amount of residual chemicals found in food, ground water, and elsewhere in the environment. Regulatory agencies around the world are restricting and/or banning the uses of many synthetic pesticides, particularly those that are persistent in the environment and that enter the food chain. Stringent new restrictions on the use of pesticides and the elimination of some effective pesticides from the market place could limit economical and effective options for controlling costly pests. Some synthetic chemical pesticides can poison the soil and underlying aquifers, pollute surface waters as a result of runoff, and destroy non-target life forms. These synthetic chemical pest control agents have the further disadvantage of presenting public safety hazards when they are applied in areas where pets, farm animals, or children may come into contact with them. They can also pose health hazards to the people applying them, especially if the proper application techniques are not followed.
Because crops of commercial interest are often the targets of pests, environmentally sensitive methods for controlling or eradicating pest infestations are desirable in many instances. This is particularly true for farmers, nurserymen, growers, and commercial and residential areas which seek to control pest populations using environmentally friendly compositions.
The most widely used environmentally friendly pesticidal formulations developed in recent years have been microbial pesticides derived from the bacterium
Bacillus thuringiensis
(“
B.t.”
).
B. thuringiensis
is a Gram-positive bacterium that produces proteins which are toxic to certain orders and species of pests. Many different strains of
B. thuringiensis
have been shown to produce insecticidal proteins. Compositions including
B. thuringiensis
strains which produce insecticidal proteins have been commercially-available and used as environmentally-acceptable insecticides because they are toxic to specific target pests, but are harmless to plants and other non-target organisms. The specificity of these toxins is often strain-specific, with certain toxins being active against a relatively narrow spectrum of pests. Indeed, many
B.t
. toxins have been identified that are active only against particular insect orders (e.g., dipterans, hymenopterans, coleopterans, etc.). This limitation prevents the use of a single
B.t
. endotoxin composition as a broad-range pesticide.
Crop pests are not the only targets for which an environmentally friendly and safe pesticide would be highly desirable. Many blood-feeding pests are known to prey on humans and animals, and many pests are vectors for pathogenic microorganisms that threaten human and animal health, including commercially important livestock, pets and other animals. The order Diptera contains a large number of blood-ingesting and disease-carrying pests, including, for example, mosquitoes, black flies, no-see-ums (punkies), horse flies, deer flies and tsetse flies. Various species of mosquitoes, for example, transmit diseases caused by viruses, and many are vectors for disease-causing nematodes and protozoa. Mosquitoes of the genus Anopheles transmit Plasmodium, the protozoan that causes malaria. The mosquito species
Aedes aegypti
transmits an arbovirus that causes yellow fever in humans. Other viruses transmitted by Aedes species include the causative agents of dengue fever, eastern and western encephalitis, Venezuelan equine encephalitis, St. Louis encephalitis, chikungunya, oroponehe and bunyarnidera The genus Culex, which includes the common house mosquito
C. pipiens
, is implicated in the transmission of various forms of encephalitis, filarial worms, and West Nile virus.
Trypanasoma cruzi
, the causative agent of Chagas disease, is transmitted by various species of blood ingesting Triatominae bugs. Tsetse flies (Glossina spp.) transmit African trypanosomal diseases of humans and cattle. Other diseases are transmitted by various blood-ingesting pest species.
Various pesticides have been employed in efforts to control or eradicate populations of disease-transmitting pests. For example, DDT, a chlorinated hydrocarbon, has been used in attempts to eradicate malaria-bearing mosquitoes throughout the world. Other examples of chlorinated hydrocarbons are BHC, lindane, chlorobenzilate, methoxychlor, and the cyclodienes (e.g., aldrin, dieldrin, chlordane, heptachlor, and endrin). The long-term stability of many of these pesticides and their tendency to bioaccumulate render them particularly dangerous to many non-target organisms.
In addition to environmental concerns, another major problem associated with conventional chemical control practices is the capability of many species to develop pesticide resistance. Resistance results from the selection of naturally occurring mutants possessing biochemical, physiological or behavioral factors that enable the pests to tolerate the pesticide when it is applied.
There is clearly a longstanding need in the art for pesticidal compounds that reduce or eliminate direct and/or indir
Cuda James S.
Long Lewis S.
Stevens Bruce Russell
Mehta Ashwin
Saliwanchik Lloyd & Saliwanchik
University of Florida Research Foundation Inc.
LandOfFree
Materials and methods for controlling pests does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Materials and methods for controlling pests, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Materials and methods for controlling pests will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3237058