Material for converting ultraviolet ray and display device...

Electric lamp and discharge devices – With gas or vapor – Three or more electrode discharge device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S586000, C313S582000, C313S583000

Reexamination Certificate

active

06583561

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a display unit displaying desired images by exciting a fluorescent material, and particularly, to a material for improving luminous efficiency and a display unit using the same, which is used, for example, for a gas discharge display unit such as a plasma display panel (hereinafter referred to as PDP).
In a conventional and typical PDP, a gas containing xenon is sealed in space sandwiched between a front substrate and a back substrate. Electric discharge is induced by applying voltage to excite a gas containing xenon, a fluorescent material is excited by emission at a wavelength of 147 nm and by broad emission at a peak wavelength of 170 nm, and desired visible light is generated to display images.
FIG. 7
shows a sectional structure of an AC type plasma display panel, which is an example of the conventional gas discharge display unit. In the figure, numeral
1
is a front glass substrate, numeral
2
is a dielectric material layer, numeral
3
is a protective film, numeral
4
is a discharge gas, numeral
5
is a fluorescent layer, numeral
6
is a partition wall, numeral
7
is a lower layer, numeral
8
is an address electrode, numeral
9
is a back glass substrate, numeral
10
is a sustain discharge electrode, numeral
20
is a dischage cell, numeral
21
is a front panel, and numeral
22
is a back panel.
In the conventional PDP, by applying external voltage to the address electrode
8
and the sustain discharge electrode
10
, electric discharge occurs in the discharge cell
20
to excite a discharge gas
4
. And at the time when the excited discharge gas
4
is transited to stabilized state, ultraviolet ray is generated (in case of using a xenon gas, it is ray of a wavelength of 147 nm and broad ray at the peak wavelength of 170 nm). By the ultraviolet ray, the fluorescent material layer
5
in the discharge cell
20
is excited to generate visible light necessary for display. And, by using the visible light, desired images are formed and displayed.
However, in these conventional PDP, an energy conversion efficiency (display light/input power) is as low as 0.4%, power consumption is larger than that of CRT or a liquid crystal display unit. And heat is generated as shown, for example, in NIKKEI Electronics, Oct. 25, 1999 (No. 755) p99. Therefore, it has become an important subject to improve the energy conversion efficiency (or luminous efficiency).
In addition, in case of color display of the conventional PDP, balance of luminous intensities of the three kinds of fluorescent materials emitting red, green and blue is important. And it determines a white color temperature at simultaneous emission of the three colors. In the conventional PDP, luminous efficiency of a blue color fluorescent material is poor, and there has been a problem that the white color temperature is low.
With respect to the above problems, at first, as one of the methods for improving the energy conversion efficiency, there is given an effective utilization of ultraviolet ray. In the conventional PDP, the ultraviolet ray irradiated from the discharge gas present in the space of the discharge cell is radiated toward all directions. However, most of the ultraviolet ray directed to the constituting materials surrounding the discharge space excluding the fluorescent material is not utilized for exciting the fluorescent material and it becomes lost. Therefore, it is intended to effectively utilize the ultraviolet ray to improve energy conversion efficiency.
In this respect, there has been a proposal to improve luminous efficiency by utilizing the ultraviolet ray absorbed in the protective film of the dielectric. For example, there is disclosed, as shown in Japanese Unexamined Patent Publication No. 20762/1977, a method for effectively utilizing ultraviolet ray by providing the protective film with fluorescence by containing 1% by weight of CeO in MgO. Also, there is disclosed a method that a fluorescent protective film material (SrMg)
2
P
2
O
7
:Eu
2
+
, which is obtained by mixing the film material with an activator to give fluorescence, absorbs ultraviolet ray generated by gas discharge and discharges ultraviolet ray having a wavelength of 2000 to 3000 Å. However, the wavelength of the ultraviolet ray irradiated according to these methods is at most 300 nm (3000 Å), and thus it was difficult to improve the color temperature as described above.
Also, as a method for improving the color temperature in the conventional PDP, there is, for example, a method for increasing a luminous amount of blue color against the luminous amount of red and green by changing discharging cell width of the three colors to improve the color temperature as disclosed in Japanese Unexamined Patent Publication No. 308179/1998. However, according to this method, since the energy conversion efficiency is not improved and structural conditions of each cell are different, the discharge conditions are different in each cell, and there is a defect that margin of discharge becomes narrow.
In order to solve the above problems, the present inventors performed various experiments. As a result, it was found that by adding a small amount of gadolinium (hereinafter referred to as Gd) among various rare earth elements into a protective film material or the like as a PDP constituted material, the protective film or the like functions as a material for converting ultraviolet ray which generates ultraviolet ray having a longer wavelength on receipt of ultraviolet ray from the discharge gas. And the film improves the luminous efficiency of the display unit such as a plasma display panel, and additionally improves the color temperature of white color display. The present invention is based on these findings.
Japanese Unexamined Patent Publication No. 220640/1995 discloses that the protective film of the alternating current discharge unit contains a compound containing gadolinium. The object of the above method is to obtain a finer magnesium oxide film formed by a printing method to improve sputtering resistance according to discharge, by simultaneously forming a spinal structured Ba
0.6
Sr
0.4
Gd
2
O
4
compound containing magnesium oxide and gadolinium according to a printing method. Accordingly, the gadolinium compound is used as a material having adhesive function, and the gadolinium is used only for a partial substituting material of the magnesium oxide film. Furthermore, in the disclosed gadolinium compound, the portion in which gadolinium is locally present has a large gadolinium concentration of about 60% by mole. And there is no generation of long wavelength ultraviolet ray due to concentration quenching (it is thought as a phenomenon caused by absorption of excited energy due to resonance transmission among activator ions when a concentration of the luminous activator added to an oxide is high).
Additionally, it is disclosed, for example, in p120, “Fluorescent Material Handbook” edited by Fluorescent Material Scientist Academy (published by Ohm Co.) that Gd shows extensive emission at about 315 nm. But there has not been known at all that Gd is used for ultraviolet ray conversion under environment of discharging and exciting fluorescent material.
SUMMARY OF THE INVENTION
The present invention has been conducted to solve the problems with the above conventional devices. The object of the present invention is to provide a material for converting ultraviolet ray, which can improve luminous efficiency of a gas discharge display device by utilizing ultraviolet ray otherwise absorbed in a barrier rib, a protective film and the like, and a display device using the same.
The first material for converting ultraviolet ray of the present invention comprises a small amount of gadolinium in a base substrate, wherein ultraviolet ray having the longer wavelength than the irradiated ultraviolet ray is generated by the ultraviolet irradiation.
The second material for converting ultraviolet ray of the present invention is that in the first material, the base substrate comprises an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Material for converting ultraviolet ray and display device... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Material for converting ultraviolet ray and display device..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Material for converting ultraviolet ray and display device... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3092155

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.