Matched antenna device and a portable radio communication...

Communications: radio wave antennas – Antennas – With radio cabinet

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C343S895000, C343S860000

Reexamination Certificate

active

06188364

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a matched antenna device for a radio communication device, including a matching means and a first antenna element.
Further it relates to a radio communication device, including a matched antenna device.
RELATED ART AND BACKGROUND OF THE INVENTION
In a radio communication device the transmitting/receiving circuits are coupled to the feed point of a radiator means via a feed line. Normally, the transmitting/receiving circuits have a nominal impedance of 50+j0 ohm. If the impedance of the radiator feed point differs substantially from that of the transmitting/receiving circuits, an impedance matching means is required for matching the impedance of the radiator to the impedance of transmitting/receiving circuits.
The radiator and the impedance matching means may then be interconnected by a second feed line or similar having a given length. This feed line is influenced electromagnetically by different conductive or dielectric bodies in its surroundings, for example a support on which the radio device is resting, the hand and head of an operator, or the chassis of the radio device or conductive parts thereof. Especially when the radiator feed point impedance is high, the length of the second feed line is significant to the environmental influence on the antenna performance. The higher the impedance of the feed point and the longer the second feed line, the higher the sensitivity to environmental variations.
A radiator of quarter-wave type may not require an impedance matching means to be connected to 50 ohm circuitry. Sometimes, a quarter-wave radiator is preferred since it allows the antenna means to be relatively short and non-obstructive. However, a drawback of quarter-wave radiators, for example in cellular telephones, is that currents are inevitably generated on the chassis of the telephone. The antenna performance is then sensitive to influence by, for example, the operator holding the telephone or pressing it to his ear.
Also, from another point of view, it is desirable to use a radiator with relatively high impedance, for example a half-wave type radiator or similar. Generally, a half-wave type radiator provides a higher efficiency and a greater overall length resulting in less screening. Particularly, on a small size cellular telephone, screening by the operator's head is a problem with regard to operating range.
In WO-A1-97/42680 it is disclosed an antenna device for a portable radio communication device, where a radiating first element is substantially directly connected to the impedance matching means.
WO-A1-98/07208 discloses an integrated matched antenna assembly, having a matching circuit including an inductor formed on a substrate. A capacitive element having two conductors in spaced relation to each other is connected to the inductor by one of the conductors being arranged parallel to the inductor. This arrangement requires several conductive layers and at least two substrates. Further, wires can be used for connecting components of the matching device.
JP-A-6152221 discloses an antenna for mobile radio equipment. The antenna is connected to one terminal of a meandering transmission line whereof the other terminal is connected to ground, and a feed point is arranged on the transmission line. These arrangements are provided inside the telephone and require a feed line to the antenna feed portion, and discrete capacitive components.
WO-A1-96/37007 discloses an antenna apparatus, wherein a radiator is connected to one end of a spiral conductor of which the other end is connected to a transceiver. A drawback with this apparatus is that the spiral has one central and one peripheral connection. Further, a feed line is provided between a connecting portion of the spiral and the antenna.
Some general problems with matching devices or circuits are that they are space demanding, complicated to assemble and complicated to mount. Generally, the arrangements of the connections also cause problems. This is especially apparent when the matching device is located inside a radiotelephone housing, includes discrete components, or is not or can not be formed into a space optimising shape.
SUMMARY OF THE INVENTION
It is an object of the invention to obtain a matched antenna device, which requires less space inside a telephone, and which can use the available space better.
It is also an object of the invention to obtain a matched antenna device, which can be produced at low cost in a simple manufacturing process.
Another object of the invention is to provide a matched antenna device, which is suitable for production in large quantities.
These and other objects are attained by a matched antenna device according to the appended claims
1
-
25
.
By the arrangement of a matching means including a conductive pattern on a flexible substrate, it is obtained a matching means which can be attached to a radiotelephone and easily be formed so as to adapt to the available space or surface.
By arranging a matched antenna device according to claim
1
, it is achieved an antenna device which provides for simple connection.
By the arrangement of two antenna elements, an antenna device which is operable in multiple bands is obtained.
By arranging coupling means in end portions of the conductive pattern or matching pattern, it is obtained an efficient matching means having simple connections.
By arranging coupling means to be located essentially on an envelope of the conductive pattern or matching pattern, it is achieved an efficient matching means having simple connections.
By arranging the conductive pattern or matching pattern so that it includes a meander shaped portion, it is obtained an efficient matching means.
By arranging the conductive pattern or matching pattern on the same side of a substrate as a radiating conductive pattern, it is obtained an efficient matched antenna device having essentially no feed line between the matching means and the antenna element. It is also achieved an antenna device which is simple to connect, and simple to manufacture at low cost.
By the arrangement of an extendable/retractable antenna element, it is achieved an efficient antenna device for operation in stand by mode and talk mode.
By the arrangement of a conductive surface separated from the conductive pattern or matching pattern by a dielectric substrate, it is achieved an efficient matching means which easily can be adjusted for matching within desired frequency ranges.


REFERENCES:
patent: 4328501 (1982-05-01), DeSantis et al.
patent: 5335368 (1994-08-01), Tamura
patent: 5973646 (1999-10-01), Engblom
patent: WO96/37007 (1996-11-01), None
patent: WO97/42680 (1997-11-01), None
patent: WO98/07208 (1998-02-01), None
Abstract of Japanese Patent Appln. No. 06152221A, May 31, 1994, Matsushita Electric Ind. Co. Ltd.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Matched antenna device and a portable radio communication... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Matched antenna device and a portable radio communication..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Matched antenna device and a portable radio communication... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2566396

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.