Master-slice system semiconductor integrated circuit and...

Active solid-state devices (e.g. – transistors – solid-state diode – Gate arrays – With particular power supply distribution means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S700000, C257S690000, C257S734000, C257S748000, C257S909000

Reexamination Certificate

active

06476425

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a master slice type semiconductor integrated circuit, such as a gate array or an embedded array, and a method for manufacturing the same. More particularly, the present invention relates to improvements in making the effective use of wiring resources.
TECHNICAL BACKGROUND
Master slice type semiconductor integrated circuits, such as, for example, gate arrays and embedded arrays, are manufactured using an unfinished wafer (master slice) in which those process steps to be performed before the metal wiring step are completed. The master slice is wired according to specific circuit functions required by the user and coated with a protection film, to thereby provide a finished wafer. Unfinished wafers may be stocked such that the delivery time is shortened to deliver semiconductor integrated circuits to customers.
Prior to manufacturing master slice type semiconductor integrated circuits, an unfinished wafer having basic cells arranged in a matrix is prepared in advance. Provision of through holes and placement and wiring of metal wiring layers to the unfinished wafer are automatically performed by an automatic placing and routing apparatus.
There is a growing tendency in which the number of metal wiring layers is increased, for example, from the two-layer to the three-layer and to the four-layer. The bottommost or first metal wiring layers in a semiconductor integrated circuit of the type described above are used as signal input wirings for inputting signals to gates of MOS transistors that form basic cells, power supply wirings for supplying power to sources thereof and signal output wirings for outputting signals from drains thereof, for example. These wirings are connected to the gates, sources or drains through contacts. Also, first metal wiring layers may be used as power source wirings for supplying power source voltages, such as potentials VDD and VSS, and signal wirings that provide connections within basic cells and between basic cells. Other metal wiring layers, such as second and third metal wiring layers, are used mainly as signal wirings.
Aluminum layers are generally used as metal wiring layers. For example, a two-layer metal wiring layer may include a first A
1
wiring and a second A
1
wiring. When wiring routes of the first and second A
1
layers are determined by an automatic placing and routing apparatus, priority wiring directions are respectively assigned to the first and second A
1
wirings.
It is noted that it is more difficult to miniaturize a master slice type semiconductor integrated circuit having a plurality of metal wiring layers compared to a standard cell type that is designed using basic cells registered in a library.
For example, let us consider one wiring example in which a signal wiring is externally lead out from a region between two power source wirings in the first layer (VDD, VSS) that are formed in a first priority wiring direction, for example. In this case, if the two power source wirings and the signal wiring are formed with the first layers, they are short-circuited. In order to cross over the power source wirings formed in the first priority wiring direction, the signal wiring has to be formed with a first layer signal wiring, a second layer signal wiring and a via that connects the first and second layer signal wirings. The second layer signal wiring is used only to cross over the first power source wiring. As a consequence, other wirings cannot be formed in such a region in the second layer. The other wirings in the second layer may need to take a detour. In this manner, the routing resource for the second layer is exhausted.
For the convenience of explanation, let us assume, for example, there are 100 lateral lines×100 vertical lines of lattice grids in a three-layer metal wiring structure, and the priority wiring direction for the first and third layers is the lateral direction and the priority wiring direction for the second layer is the vertical direction. In this case, while the first and third layers provide a total of 200 wiring lines in the lateral direction as the routing resource, the second layer provides 100 wiring lines in the vertical direction as the routing resource.
It is noted that the placement of the metal wirings in the first layer is mostly determined by the placement of basic cells, and the number of usable wiring lines is determined as a matter of course. Therefore, if the wirings in the second and third layers are disposed in a well-balanced manner, the size of the chip can reduced. However, as described above, if the wirings in the second layer are used to cross over the wirings in the first layer, the wiring efficiency of the second layer deteriorates.
In addition, when a roundabout routing of wirings is implemented by connecting a plurality of layers with vias, or a roundabout routing of wirings is made within the same layer, the wiring length increases. Moreover, in recent years, the line width has become narrower as the semiconductor manufacturing process has become more miniaturized. As a result, the resistance of the wiring per unit length tends to increase. Because of these two major factors, problems arise in that the wiring resistance is increased, and the signal delay is thus increased.
In solving these problems, the inventors of the present application have paid attention to the fact that the wiring resource of metal wiring layers and, in particular, the wiring resource of second metal wiring layers are not effectively utilized.
It is an object of the present invention to provide a master slice type semiconductor integrated circuit and a design method therefor that make an effective use of the wiring resource of metal wiring layers to thereby increase the wiring efficiency and reduce the chip size.
Another object of the present invention is to provide a master slice type semiconductor integrated circuit and a design method therefor that prevent the increase in the wiring resistance and reduce the signal delay as much as possible by making an effective use of the wiring resource of metal wiring layers to thereby increase the wiring efficiency.
SUMMARY OF THE INVENTION
In accordance with one embodiment of the present invention, a placing and wiring method for a master slice type semiconductor integrated circuit is provided. The method is conducted by an automatic placing and routing apparatus with respect to a master slice having a plurality of basic cells formed in a matrix, in which first and second power source wirings that are formed along a first direction and traverse the plurality of basic cells are connected to a plurality of signal wirings that are formed along the first direction or a second direction that traverse the first direction to wire within each of the plurality of basic cells and/or between the plurality of basic cells.
The method according to the embodiment includes: the first step of registering in the automatic placing and routing apparatus that defines the first direction or the second direction as a priority wiring direction definitions of effective pin positions that connect the plurality of signal wirings, the plurality of first and second power source wirings and the plurality of basic cells for each of layers in which the wirings are formed; the second step of registering a net list that defines connections among the plurality of basic cells in the automatic placing and routing apparatus; and the third step of determining the placement of actual pin positions and wiring routes for the first and second power source wirings and the plurality of signal wirings based on data for the definitions of the effective pin positions and the net list.
The first step includes the step of defining the effective pin positions inside and outside of a region between the first power source wiring and the second power source wiring, in a region corresponding to one of a plurality of component layers with which transistors of the plurality of basic cells are formed and on lattice grids along which the plurality of basic cells are f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Master-slice system semiconductor integrated circuit and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Master-slice system semiconductor integrated circuit and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Master-slice system semiconductor integrated circuit and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2946864

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.