Master cylinder

Power plants – Pressure fluid source and motor – Pulsator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S548000, C060S550000

Reexamination Certificate

active

06606859

ABSTRACT:

This invention relates to a master cylinder wherein a piston assembly has first and smaller second surface areas that are combined to define a first effective area while the smaller second surface area defines a second effective area in a first chamber and where operational pressurized hydraulic fluid presented to the first chamber is directly communicated to wheel brakes in a first brake circuit and acts on the first effective area to pressurize fluid in a second chamber that is communicated to wheel brakes in a second brake circuit to effect a first brake application in response to movement of an input member by a force applied to a brake pedal and where movement of the input member by a manual force, in an absence of the presence of operational pressurized hydraulic fluid in the first chamber, moves the second effective area into the second chamber to pressurize fluid therein that is communicated to the wheel brakes in the second brake circuit.
BACKGROUND OF THE INVENTION
The present invention is of a type hydraulic brake boosters referred to as a “full-power” brake booster, of which the following U.S. Patents are considered to be typical: U.S. Pat. Nos. 4,441,319; 4,490,977; 4,514,981; 4,665,701; 4,685,297; 4,704,867; 4,724,674; 5,526,731 and 5,927,074. In such brake boosters, an accumulator is charged with fluid pressure and selective activated through movement of a control valve by an input member to present pressurized fluid to an actuation chamber that acts on an actuation piston. The actuation piston in turn provides a force for moving piston in a master cylinder that pressurizes operational fluid that is presented to wheel brakes to effect a brake application. The operational pressure that is developed is proportional to the force applied to the actuation piston and inversely proportional to the cross-sectional area of the piston in the master cylinder for a given force applied to an input member by an operator to move the control valve. The resulting travel of the input member and brake pedal is proportional to the travel of the actuation piston in the master cylinder. Conversely, the travel of the piston in the master cylinder is also proportional to the displacement of the fluid in the brake system at any given pressure and inversely proportional to the cross-sectional area of the actuation piston.
Thus, the travel of the input member and brake pedal is inversely proportional to the cross-sectional area of the actuation piston. Given these facts, in order to achieve less travel of the input member it is necessary to have a larger cross-sectional area for the pistons in the master cylinder. However with an increase in the size of the pistons in the master cylinder to produce a larger or increased output force, a same increase is necessary for an input force for effecting a brake application. An increase in the size of the pistons would not significantly effect the development of a brake application when pressurized fluid stored in an accumulator is available to provide a boost force, however, during a manual mode when the force is provided by an operator, under some circumstances an operator may not be capable of or have sufficient strength to develop an input force to produce an output force to meet braking requirement set by FMVSS-105 and FMVSS-135.
SUMMARY OF THE INVENTION
The present invention overcomes a disadvantage in the prior brake systems when switching from a power assist mode to a manual mode to effect a brake application by providing a master cylinder with a piston assembly having a first cross-sectional area that is utilized during a power assist mode of operation to effect a first brake application and a smaller second cross-sectional area that is utilized during a manual mode of operation to effect a second brake application.
According to this invention, the master cylinder in a first embodiment has a housing with a bore therein for retaining a first piston assembly to define a first chamber and a second chamber. The first chamber is connected through a first outlet port to wheel brakes in a first brake circuit while the second chamber is connected through a second outlet port to wheel brakes in a second brake circuit. The first piston assembly includes a first sleeve that has a concentric first cylindrical body located therein. The first sleeve has a first surface area and the first cylindrical body has a second surface area that are combined to define a first effective area within the first chamber such that the diameter of the first sleeve is substantially equal to the diameter of the bore. The second surface area of the first cylindrical body has a diameter that is smaller than the sleeve and defines a second effective area within the first chamber. In the master cylinder in a second embodiment, a second piston assembly that engages the first piston assembly and includes a second sleeve with a concentric second cylindrical body located therein. The second sleeve has a diameter equal to the first sleeve and as a result the surface area of the second sleeve and second cylindrical body which is located in the second chamber is equal to the first effective area. The surface area of the second cylindrical body that is located in the second chamber may or may not be equal to the surface area of the first cylindrical body located in the first chamber but in a preferred use such are substantially equal. In both the first and second piston assembles, the first cylindrical body has a blind bore therein that carries a valve to control communication of pressurized fluid from a source of operational hydraulic fluid to the first chamber. During a first or power assist mode of operation, the valve is activated by movement of an input member connected to a brake pedal to corresponding allow operational hydraulic fluid to be directly communicated to the wheel brakes in the first brake circuit by way of the first chamber to initiate a first brake application. The operational hydraulic fluid presented to the first chamber also simultaneously acts on first effective area of each piston assembly and moves such piston assembly toward the second chamber. After closing a compensation port to the second chamber, the first effective area of the piston assembly in the second chamber pressurize fluid therein and develops a first pressurized fluid that is communicated to wheel brakes in the second circuit to assist in effecting the first brake application. In a second or manual mode of operation the master cylinders in the first and second, embodiments function to effect a brake application when operational hydraulic fluid is not available for presentation to the first chamber. In a manual mode, an input force applied to the brake pedal by an operator is transmitted by the input member into the first cylindrical body and directly moves the second effective area into the second chamber to pressurize fluid therein and after closing of the compensation post develop pressurized fluid that is communicated to the wheel brakes in the second brake circuit to effect a second brake application. The ratio of the first effective area to the second effective area is selected such the pedal travel necessary to achieve a pressure level of the fluid in the second chamber in the manual mode is about twice the travel as required during a power assist mode. In the second embodiment of the piston assembly, a space is located in the abutment of the first sleeve and concentric first cylindrical body and the second sleeve and second cylindrical body to define a secondary actuation chamber. The secondary actuation chamber is connected to the source of operational hydraulic fluid through an electronic control valve under the control of an electronic control unit (ECU) for the vehicle. The ECU receives various inputs relating to conditions that may effect a safe operation of the vehicle. The inputs are analyzed by the ECU and if conditions dictate a signal to effect a brake application is developed to attenuate or at least reduce the effect of the conditions on the operation of the vehicle. The ele

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Master cylinder does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Master cylinder, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Master cylinder will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3096230

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.