Massively parallel inspection and imaging system

Optics: measuring and testing – Inspection of flaws or impurities – Surface condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06208411

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the art of optical inspection of specimens, such as semiconductor wafers, and more specifically to a massively parallel inspection system having relatively large fields of view.
2. Description of the Related Art
Optical inspection techniques for small specimens, such as features on semiconductor wafers, have previously utilized confocal microscopy to locate and examine the desired site. Confocal microscopy or confocal imaging each provide a variety of limitations, most particularly a relatively narrow field of view, or spot width, depending on the desired resolution of the image received and the overall quality of the components employed.
The essence of confocal microscopy or confocal imaging is to perform a double imaging of the specimen utilizing point illumination and a point detector. For example, the use of confocal imaging entails focusing a beam transmitted and reflected on the semiconductor wafer using an objective lens, wherein the area examined at any given time is on the order of 20-50 microns on each side. The problem with this narrow field of view is that inspection of a wafer having dimensions in excess of 100 square inches can be extremely time consuming.
Further, this single spot inspection system, wherein inspection comprises scanning using a single narrow spot, requires two dimensional scanning. In such an arrangement, the single spot passes over a linear portion of the sample while recording data, then moves one spot diameter or a fraction of a spot diameter over and passes over the next linear portion of the sample while recording data. The system thus iteratively progresses through inspection of the wafer using this stepping technique.
Different methodologies have been employed to improve the throughput of confocal microscopy and inspection systems, but these systems typically address improving scanning speed and accuracy using the smaller spot width mentioned above. The use of large spots removes much of the confocal advantage and is therefore undesirable.
Systems employing beam expanders have been utilized previously, but such systems have been directed toward alignment issues. Such a system is illustrated in U.S. Pat. No. 5,231,467 to Takeuchi et al. The Takeuchi system provides a compensating optical system which utilizes a diffraction grating on a semiconductor wafer to diffract the incoming light beam. However, this does not significantly alter the area on the specimen which can be observed in a given time period, but rather provides position alignment assistance when different wavelength light is used on the two samples to be aligned.
Further, systems employing multiple spot confocal imaging have also been available. U.S. Pat. No. 5,737,084 to Ishihara illustrates a system in which a multi-spot confocal arrangement is used to measure three-dimensional shapes. U.S. Pat. No. 5,248,876 to Kerstens et al. describes a similar system for imaging at different heights. In both these systems an array of pinholes is utilized both with and without an accompanying lens array in front of an extended source of light to generate a plurality of point sources. These point sources are then brought into focus on the sample by the action of an objective lens. The reflected beams are directed back through the same pinhole array, or another matching array of pinholes. One drawback of such an approach is that the illumination position and collection pinholes must be precisely matched over the entire array. This requires a very high degree of mechanical stability, and implies a relatively large sensitivity to unwanted vibrations. Even in a situation where the illumination and collection pinhole arrays are one and the same, as in the case of U.S. Pat. No. 5,737,084, the relative size of the pinholes with respect to the eventual pixel size in the detector array still requires precise alignment between the detector and pinhole arrays. A further problem with the identical illumination/pinhole array arrangement is the possibility of stray light that may find its way onto the unintended detector pixels. Special precautions are thus necessary to eliminate this risk. In addition, the patent only describes a system capable of generating a sampled version of the image of the object under examination. No provisions are made for the scanning of either the beams or the sample to cover the entire sample, and no methodology is taught to achieve the same. It is important to note that the scanning action in a multi-spot system should ideally be different from that practiced in the a case of a single spot system so that proper advantage is taken of the multiplicity of the beams.
Yet another consideration that pertains to these references is the fact that they rely on a precise action of the microlens/pinhole structures to generate high quality beams for each individual focal spot. This precision may not be easily attainable, particularly for applications in very high resolution imaging, where the quality of the wavefront in each beam is paramount.
An important aspect of current scanning applications is the operation of such a system as a dark-field imaging/inspection system. This issue is addressed in U.S. Pat. No. 5,248,876, which teaches the use of polarization, and polarization rotating components, to separate scattered radiation from the spectrally reflected light. Such an approach has undesirable consequences in that it essentially transforms the system into a polarizing microscope and requires the use of polarized light of a given direction to image the specimen. This polarization method also requires the use of two orthogonal polarizers in an arrangement, with one being positioned annularly with respect to the other, which forms the central region of a circular aperture. In dark-field imaging/inspection, the ability to respond to all features regardless of the specificity of their orientation or polarization behavior is extremely important. The inability to provide this feature is a significant drawback.
The references cited above also only address usage of multiple normally, or nearly normally, incident beams with respect to the sample. They do not teach the methodology under which the multi-spot arrangement could be used in obliquely incident configurations, where great advantage is gained in detecting minute defects on the surface of specimens such as silicon wafers.
It is therefore an object of the current invention to provide a system for increasing the inspected area of a confocal microscopic system, thereby increasing throughput, while at the same time offering minimal optical or confocal degradation under both brightfield and darkfield scanning.
It is a further object of the current invention to provide a system for optical inspection which has improved throughput performance and does not require significant modifications to existing hardware or software.
It is still a further object of the current invention to provide a system for detecting defects on a semiconductor wafer, the system having the ability to detect defects in a relatively short time period.
It is yet another object of the current invention to provide an optical inspection system which is relatively impervious to mechanical vibrations and stray light, and does not require precise alignment between detector and collection array.
It is yet another object of the current invention to provide a darkfield imaging optical inspection system which does not require use of polarized light of a given direction in the imaging process, and responds to all features irrespective of the specificity of their orientation or polarization behavior.
SUMMARY OF THE INVENTION
According to the present invention, there is provided a massively parallel inspection and imaging system which employs a plurality of focused beams to illuminate the sample. Light energy is emitted from a laser and passes through a relatively low resolution diffraction grating or preferably a digital optical element (multi spot generator). The low resolution diffract

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Massively parallel inspection and imaging system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Massively parallel inspection and imaging system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Massively parallel inspection and imaging system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2462665

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.