Massive parallel optical interconnect system

Optical waveguides – With disengagable mechanical connector – Structure surrounding optical fiber-to-fiber connection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S065000

Reexamination Certificate

active

06276840

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention pertains to a fiber optic interconnect system and, in particular, a massive parallel optical interconnect system.
2. Discussion of the background
Optical fiber connectors having multiple fibers are known in the art. Such multi-fiber connectors are increasingly necessary as greater bandwidth applications are needed. Generally, the array of fibers are mounted in V-grooves which are etched in a silicon material in order to provide for precision positioning of the fibers. Precision positioning of the fibers in the silicon block is imperative so that when two connectors are mated, the fibers align as closely as possible in order to limit any signal loss. The use of silicon blocks is useful in that the V-grooves may be etched precisely. Etching of silicon blocks is well known in the art and generally is accomplished using standard anisotropic etchants, such as ethylene diamine pyrocatechol (EDP) or KOH in combination with a standard etch mask material such as thermally grown SiO2. However, the mounting of silicon blocks within a housing and ensuring the proper alignment of two silicon blocks when they are mated is difficult where automated assembly is desired. Also, silicon is a hard, brittle material which is difficult to polish and is easily broken. Other multiple fiber connectors using silicon blocks have the blocks mounted within a housing and splines mounted next to the blocks which protrude beyond the end face of the block and the connector. This arrangement of assembling the connector having the silicon blocks, splines, fibers and a housing is time consuming. In other designs, splines are inserted within the silicon block. In such an arrangement, the connector having the splines protruding therefrom mates with a connector without splines; so that the first connector splines are inserted into the vacant grooves of the silicon block of the second connector. Such an arrangement is disadvantageous because the splines may stub on the silicon resulting in breakage. Moreover, silicon blocks as presently configured are not easily terminated in the field. Due to the arrangement of the connector housing, the fibers must be placed in the grooves of the silicon blocks prior to placing the major surfaces of the silicon blocks next to each other in order to capture the optical fibers within the grooves. Such assembly and alignment is not easily accomplished by technicians in the field.
Therefore, it is an object of the present invention to provide a massive parallel optical interconnect system which is easily and inexpensively manufactured and assembled and provides for simple field termination.
It is another object of the present invention to provide a fiber optic connector which has a common form factor presently used in the fiber optic connector industry.
It is a further object of the present invention to provide a multi-fiber connector in a miniaturized package.
It is also an object of the present invention to provide a ferrule which is easily and inexpensively manufactured and provides for precision alignment of massive or multiple optical fibers.
It is another object of the present invention to provide a miniaturized fiber optic connector having a multiplicity of optical fibers terminated therein.
It is also an object of the present invention to provide an interconnection system which allows both ends of the cable to be identically terminated to ease installation.
It is a further object of the present invention to provide methods of assembling a fiber optic connector which provides for a simple termination process.
It is another object of the present invention to provide a massive parallel optical receptacle which allows for the mating of a massive parallel optical connector from a first side and an optical connector having a differing form factor from a second side.
It is yet another object of the present invention to provide for a fiber optic ferrule that may be formed from ferrule halves, where each ferrule half contains an entire beveled edge.
It is another object of the present invention to provide each ferrule half with a vertically aligned wall that prevents seepage of adhesive fluid onto the beveled edge when the ferrule halves are combined to form a ferrule.
It is another object of the present invention to provide for a ferrule made of a resin composition having an anisotropy of 1.5 or less.
SUMMARY OF THE INVENTION
A principal object of this invention is to provide a massive parallel interconnect system comprising a plug body including an aperture therethrough including a ferrule having beveled edges and a receptacle including an opening having an alignment sleeve having two alignment members for providing alignment with the beveled edges of the ferrule. The ferrule accommodates multiple fibers. The ferrule is injection molded plastic having grooves therein for receiving optical fibers. The grooves are rectilinear to the beveled edges of the ferrule. The plug body includes a mating end that dimensionally conforms to an SC style fiber optic connector form factor having an end face dimension of approximately 8.99 mm×7.39 mm. The ferrule includes at least two optical fibers. A pair of plug bodies is inserted into either end of the receptacle and provides for a precision alignment of the ferrules. The alignment sleeve includes a pair of alignment members mounted within the receptacle providing a spring-form system wherein a force is applied to the alignment members and towards the beveled edges of a ferrule parallel to major surfaces of the ferrule halves. The alignment sleeve includes a spring clip for retaining alignment members within the alignment sleeve. The spring clip includes arms having a hook portion for engaging the alignment member. The spring clip applies a spring force to the alignment members toward the beveled edges of the ferrule parallel to major surfaces of the ferrule halves. The plug body includes a rear holder mounted at the cable entry end of the plug body and the rear holder includes an aperture for receiving a fiber optic cable. The rear holder includes a strain relief which receives a bend relief boot. The fiber optic cable is secured to the rear holder via retention means to capture strength members of the fiber optic cable and transfer forces applied to the cable to the plug body. The plug body includes a marking to designate the position of the first optical fiber. The plug body includes a resilient member to provide for axial resiliency of the ferrule. The aperture of the plug body is greater in size than the size of the ferrule wherein the ferrule is pivotally movable within the plug body. The plug body includes a sliding tab release sleeve. The receptacle includes latch arms. The receptacle includes an opening which dimensionally conforms to an SC style fiber optic receptacle form factor including an opening of approximately 9.0 mm×7.4 mm. The ferrule includes a window for receiving adhesive therethrough. The ferrule is terminated by inserting multiple optical fibers within grooves of the ferrule and securing the optical fibers within the grooves via chemical bonding and polishing the end face of the ferrule. In one particular embodiment the ferrule is formed of two halves each having a major surface having V-grooves therein and the halves each having a pair of beveled edges. The ferrule halves include a mating end and a rear end having a collar half molded integrally with the ferrule half The ferrule includes a mating end and a rear end having a collar mounted thereon. The ferrules halves are bonded together and the fibers are secured therein via adhesive.
In an embodiment, a massive parallel optical connector is provided comprising a plug body having an aperture therethrough and a molded plastic ferrule having multiple optical fibers and the ferrule mounted in the aperture. The ferrule includes beveled edges. The ferrule is a molded plastic ferrule having grooves therein for receiving the optical fibers. The grooves are rectilinear to the beveled edges of the ferr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Massive parallel optical interconnect system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Massive parallel optical interconnect system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Massive parallel optical interconnect system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2465783

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.