Mass spectrometry with multipole ion guides

Radiant energy – Ionic separation or analysis – Cyclically varying ion selecting field means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06753523

ABSTRACT:

FIELD OF INVENTION
This invention relates to the field of mass spectrometric analysis of chemical species. More particularly it relates to the configuration and operation use of multiple multipole ion guide assemblies in higher pressure vacuum regions.
BACKGROUND OF THE INVENTION
Mass Spectrometers (MS), have been used to solve an array of analytical problems involving solid, gas and liquid phase samples with both on-line and off-line techniques. On-line Gas Chromatography (GC), Liquid Chromatography (LC), Capillary Electrophoresis (CE) gas and other solution sample separation systems have been interfaced on-line to mass spectrometers configured with a variety of ion source types. Some ion source types operate at or near atmospheric pressure and other ion source types produce ions in vacuum. Mass spectrometers operate in vacuum with different mass analyzer types requiring different vacuum background pressure for optimal performance. The present invention comprises a configuration of one or more multipole ion guides configured in a mass spectrometer. Although the invention can be applied to multipole ion guides comprising any number of poles, the description of the invention given below will present quadrupole or four pole ion guide assemblies. Higher mass to charge separation resolution can be achieved with quadrupole ion guides when compared with the performance of ion guides configured with more that four poles. Quadrupole ion guides have been configured as the primary elements in single and triple quadrupole mass analyzers or as part of hybrid mass spectrometers that include Time-Of-Flight, Magnetic Sector, Fourier Transform and even three dimensional quadrupole ion trap mass analyzers. Typically, quadrupole ion guides operated in mass to charge selection mode, are run in background vacuum pressures that avoid or minimize ion to neutral background gas collisions. A wider range of background pressures have been used when operating quadrupoles in RF only ion transmission mode. For some applications, pressure in a quadrupole ion guide operating in RF only ion transmission mode is maintained sufficiently high to promote collisional damping of ion kinetic energy or Collisional Induced Dissociation (CID) fragmentation of ions traversing the ion guide length.
Commercially available; quadrupole mass analyzers with electron multiplier or photomultiplier detectors are operated in analytical mass to charge selection mode at background pressures typically below 2×10
−4
torr range. There are examples of multipole ion guides operated at elevated background pressures I vacuum with some degree of ion mass to charge separation. U.S. Pat. Nos. 5,401,962 and 5,613,294 describe a small quadrupole array with an electron ionization (EI) ion source and a faraday cup detector which can be operated as a low mass to charge range gas analyzer at background pressures up to 1×10
−2
torr. Performance of this short quadrupole array begins to decrease when the background pressure increases to the point where the mean free path of an ion is shorter than the quadrupole rod length. U.S. Pat. No. 5,179,278 describes a quadrupole ion guide configured to transmit ions from an Atmospheric Pressure Ionization (API) source into a three dimensional quadrupole ion trap. The quadrupole ion guide described in U.S. Pat. No. 5,179,278 can be operated as a trap to hold ions before releasing the trapped ions into the three dimensional quadrupole ion trap. During ion trapping, the potentials applied to the rods or poles of this quadrupole ion guide can be set to limit the range of ion mass to charge values released to the ion trap. The quadrupole ion guide can also be operated with resonant frequency excitation collisional induced dissociation fragmentation of trapped ions prior to introducing the trapped fragment ions into the three dimensional ion trap. After the quadrupole ion guide has released its trapped ions to the three dimensional ion trap, it is refilled during the three dimensional ion trap mass analysis time period. A quadrupole ion guide that extends continuously through multiple vacuum pumping stages is described in pending U.S. patent application Ser. No. 08/694,542. A portion of the quadrupole ion guide length is positioned in a vacuum region that pressures greater than one millitorr insuring ion and neutral gas background collisions. Pending U.S. patent application Ser. No. 08/694,542 describes a hybrid mass spectrometer wherein the multiple vacuum stage multipole ion guide is configured with a Time-Of-Flight (TOF) mass analyzer. As described, the quadrupole ion guide is operated in combinations of ion transmission, ion trapping, mass to charge selection and CID fragmentation modes coupled with Time-Of-Flight mass to charge analysis. The hybrid quadrupole Time-Of-Flight apparatus and method described provides a range of MS/MS
n
mass analysis functions. In an improvement over the prior art, one embodiment of the present invention comprises multiple quadrupole ion guides configured and operated in a higher pressure vacuum region of a hybrid TOF mass analyzer improving the mass analyzer MS/MS
n
performance and analytical capability.
Multipole ion guides operated in RF only mode at elevated pressures have been used as an effective means to achieve damping of ion kinetic energy during ion transmission from Atmospheric Pressure Sources to mass analyzers. A quadrupole ion guide, operated in RF only mode in background pressures greater than 10
−4
torr, configured to transport ions from an API source to a quadrupole mass analyzer is described in U.S. Pat. No. 4,963,736. Ion collisions with the neutral background gas serve to damp the ion kinetic energy during ion transmission through the ion guide. This potentially can reduce the primary ion beam energy spread and improve ion transmission efficiency. Multipole ion guides operated in elevated background pressures have been used extensively as collision cells for the CID fragmentation of ions in triple quadrupoles and hybrid magnetic sector and TOF mass analyzers. Ion guides configured and operated as collision cells are run in RF only mode with a variable DC offset potential applied to all rods. U.S. Pat. No. 5,847,386 describes the configuration a multipole ion guide assembly configured to create an electric field along the ion guide axis to move ions axially through a collision cell or to promote CID fragmentation within a collision cell by oscillating ions axially back and forth within the individual ion guide assembly length. As described, the ion guide assembly with an axial field is operated in RF only mode with a common RF applied to all poles of the quadrupole ion guide assembly. Multipole ion guide collision cells that have been incorporated in commercially available mass analyzers and that have been described in the literature are configured as individual ion guide assemblies isolated in a vacuum pumping stage or contained in a surrounding enclosure. The ion guide surrounding enclosure, generally located in a lower pressure vacuum region, is configured to minimize the higher pressure collision cell background pressure from entering the surrounding lower vacuum pressure chamber. Commercially available triple quadrupoles, shown as prior art in
FIG. 20
generally are configured with three multipole ion guides in one vacuum pumping stage. The elevated pressure within the collision cell is maintained by leaking collision gas into the enclosure surrounding the collision cell multipole ion guide. Gas leaks out of the collision cell through the enclosure entrance and exit apertures configured along the triple quadrupole centerline. One aspect of the present invention is the configuration of multiple quadrupole ion guides positioned in a common region of higher vacuum pressure higher pressure run in ion mass to charge selection and CID fragmentation operating modes. A further aspect of the invention is the configuration of multiple quadrupole ion guides in a vacuum region of elevated pressure wherein each quadrupole can be opera

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mass spectrometry with multipole ion guides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mass spectrometry with multipole ion guides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mass spectrometry with multipole ion guides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3365949

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.