Radiant energy – Ionic separation or analysis – Methods
Reexamination Certificate
2000-11-16
2003-03-04
Berman, Jack (Department: 2881)
Radiant energy
Ionic separation or analysis
Methods
Reexamination Certificate
active
06528784
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to mass spectrometry, and more particularly to mass spectrometers employing atmospheric pressure ion sources such as electrospray or atmospheric pressure chemical ionization. More particularly, the invention relates to the use of two consecutive ion guides between the ion source and the mass analyzer to dissociate adduct ions, thus increasing the ion current for the analytically useful molecular species.
BACKGROUND OF THE INVENTION
Generally, the interface between the atmospheric pressure ion source and the mass analyzer includes a capillary tube or other restrictive aperture which determines ion and gas throughput between the atmospheric pressure ionization region and a lower pressure region. The ions are drawn through the capillary or other restrictive aperture and directed to a downstream conical skimmer with a small aperture through which the sample ions flow. A tube lens or other electrostatic or electrodynamic focusing element may be associated with the capillary to force ions to the center of the jet stream leaving the capillary to thereby increase the ion transmission through the aperture of the skimmer. Reference is made to U.S. Pat. No. 5,157,260 which describes the operation of an atmospheric pressure ionization source, capillary lens and conical skimmer. One or more vacuum stages are interposed between the skimmer and the mass analyzer which is operated at vacuum pressures in the free molecular flow region.
The prior art interface vacuum stages have included ion guides to transfer the ions through the stages of decreasing pressure into the mass analyzer. In many prior art systems, the ions are guided by electrostatic lenses. In other systems, the ions are guided by electrodynamic multipole ion guides.
The use of an r.f.-only octopole ion guide for focusing and guiding ion beams has been described by Teloy and Gerlich (Chem. Phys., Vol. 4, p. 417, 1974) and Jarrold et. al. (Mol. Phys., Vol. 39, p. 787, 1980).
The dissociation of mass-selected ions in an r.f.-only quadrupole by collision with a target gas at low translational energies (E
lab
<about 100 eV) has been described by R. A. Yost and C. G. Enke et. al. (Anal. Chem., Vol. 51, p. 1251a, 1979), and Dawson et. al. (Int. J. Mass Spec. Ion Proc., Vol. 42, p. 195, 1982).
McIver et. al. described the use of an r.f.-only quadrupole ion guide for guiding a beam of mass-selected ions into a Fourier-transform ion cyclotron resonance mass analyzer (Int. J. Mass Spec. Ion Proc., Vol. 64, p. 67, 1985).
Szabo described the theory of operation for multipole ion guides with various electrode structures (Int. J. Mass Spec. Ion Proc., Vol. 73, pp. 197-312, 1986).
Efficient transport of ions through vacuum chambers by multipole ion guides has been described by Smith et. al. (Anal. Chem., Vol. 60, pp. 436-441, 1988).
Beu et. al. described the use of three quadrupole ion guides to transport ions from an atmospheric pressure ionization source through three vacuum pumping stages into a Fourier-transform ion cyclotron resonance mass analyzer (J. Am. Soc. Mass Spec., Vol. 4, pp. 557-565, 1993).
U.S. Pat. No. 4,963,736 describes the use of a multipole ion guide in the first pumping stage of a two-stage system. Operation of the multipole ion guide in certain length-times-pressure regimes is claimed for the purposes of enhancing ion signal.
U.S. Pat. Nos. 5,179,278 and 5,811,800 describe the temporary storage of ions in an r.f. multipole rod system for subsequent analysis in an rs.f. quadrupole ion trap mass spectrometer. This is done for the purpose of matching the time scales of compounds eluting from chromatographic or electrophoretic separation devices to the time scale of mass spectrometric analyses performed by an r.f. quadrupole ion trap.
U.S. Pat. No. 5,432,343 describes an ion focusing lensing system for interfacing an atmospheric pressure ionization source to a mass spectrometer. It describes the use of an electrostatic lens in a transition flow pressure region of the interface, claiming benefit of independent adjustment of operating voltages controlling the collisionally induced dissociation and declustering processes. Enhancement of ion beam transmission into the mass analyzer is also claimed.
U.S. Pat. No. 5,652,427 describes in one embodiment a system in which a multipole ion guide extends between two vacuum stages and in another embodiment a system which includes a multipole in each of two adjacent stages. Improved performance and lower cost are claimed.
U.S. Pat. No. 5,852,294 describes the construction of a miniature multipole ion guide assembly.
A goal to be achieved in all single or multiple interface vacuum chambers is to transport as many protonated molecular cations or molecular anions as possible from the atmospheric pressure ionization source to the mass analyzer. However, many solvent adduct ions which are formed in the high pressure region travel through the interface vacuum chambers into the analyzer. The process of solvent adduction in the mass spectrometer system is generally considered to be a non-covalent association between sample ions of interest and neutral solvent molecules. Thus, in the case of introduction of an analyte into an electrospray or atmospheric pressure chemical ionization source, the ion current produced from that analyte may be divided between the protonated molecular cation or molecular anion and one or more solvent adduct species. Specific detection is usually accomplished by monitoring the ion signal, or derivative of that signal, for one specific mass. In the case where solvent adducts are formed, the limit of detection or limit of quantitation for the analyte is reduced.
Experimental evidence indicates that these adduct ions are predominantly formed in the high pressure regions of the system ranging from the API source region through the interface vacuum regions. The degree of adduction varies directly with the pressures in these regions. The formation of adduct ions significantly reduces the abundance of sample analyte ions. Furthermore, the adduct ions which enter into the mass analyzer complicates the mass spectrum and make the identification of mass peaks more difficult.
OBJECTS AND SUMMARY OF THE INVENTION
It is an object of the present invention to provide a mass spectrometer system employing an ion source with multiple ion guides configured and operated to convert adduct ions into sample ions and a method of operating multiple ion guides to convert adduct ions into sample ions to thereby increase the analyte ions current and sensitivity of the mass spectrometer system.
In accordance with the invention, there is provided a mass spectrometer including a mass analyzer disposed in a high vacuum chamber for analyzing ions formed in an ionization source which includes first and second evacuated interface chambers immediately preceding the mass analyzer chamber, with the first interface chamber being at a higher pressure than the second interface chamber, and including a first ion guide for guiding ions from the ion source into said second interface chamber which includes a second multipole ion guide for guiding the ions from the first interface chamber into the high vacuum analyzer chamber for analysis. Both r.f. and DC potentials are applied to the said first and second ion guides to ensure ion focusing and transmission through related vacuum chamber. A first ion lens is disposed at the input of the first interface chamber for directing ions into the first multipole ion guide, an interchamber ion lens is disposed between the first and second interface chambers for directing ions into said second multipole ion guide, and an ion lens or a lens stack is disposed between the second interface chamber and the analyzer chamber for directing ions into said analyzer for analysis. These ion lenses also serve as gas conductance restrictors between said interface chambers.
A DC voltage source is connected to provide a potential difference between the first lens and the first multipole ion guide or between interchamber lens and the sec
Dunyach Jean-Jacques
Schoen Alan E.
Tang Keqi
Berman Jack
Dorsey & Whitney
Smith II Johnnie L
LandOfFree
Mass spectrometer system including a double ion guide... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Mass spectrometer system including a double ion guide..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mass spectrometer system including a double ion guide... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3039980