Mass flow rate measuring instrument

Measuring and testing – Volume or rate of flow – Mass flow by imparting angular or transverse momentum to the...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

G01F 184

Patent

active

060822023

DESCRIPTION:

BRIEF SUMMARY
The invention concerns a mass flowmeter for flowing media, which operates according to the Coriolis principle, with one at least basically straight Coriolis line guiding the flowing medium, with at least one oscillation generator acting on the Coriolis line, with at least one sensor detecting Coriolis oscillations based on a Coriolis force and/or Coriolis forces, and with a compensation cylinder, the Coriolis line being located within the compensation cylinder and mechanically connected with the compensation cylinder.


BACKGROUND OF THE INVENTION

A mass flowmeter for flowing media of the above-mentioned type is known, for example from DE-A-41 24 295. As opposed to the mass flowmeters also known with two parallel Coriolis lines, which operate in the manner of a tuning fork (cf. e.g. U.S. Pat. No. 4,127,028), in the case of this known mass flowmeter, it is a problem that its center of mass oscillates back and forth, so that the possibility for introducing disturbing oscillations is greater, again resulting in loss of measurement accuracy.
In the case of the known mass flowmeters, in the case of which two parallel Coriolis lines are operated in the manner of a tuning fork, it is a problem that they have an increased flow resistance because of a complicated line course, and at the same time they can be cleaned only at increased expense. Precisely the last problem obtains also for mass flowmeters with parallel straight Coriolis lines (cf. e.g. DE C-34 43 234).


SUMMARY OF THE INVENTION

Thus the object of the invention is to improve the measuring accuracy of the known mass flowmeter for flowing media, which operates according to the Coriolis principle, while retaining its basic advantages.
The problem indicated and derived previously is solved in accordance with the invention by having the oscillation properties of the compensation cylinder essentially correspond to those of the Coriolis line.
The design of the mass flowmeter for flowing media in accordance with the invention ensures that the Coriolis line and the compensation cylinder oscillate opposite one another at least essentially in the manner of a tuning fork. In this way, the oscillation of the center of mass of the mass flowmeter is reduced to a small amount, if not entirely eliminated, by means of which the possibility of coupling disturbing oscillations is reduced and thus the measurement accuracy is increased.
The adjustment of the oscillation properties, in particular of the mass, the spring constant, and the attenuation constant, of the compensation cylinder to those of the Coriolis line is made significantly easier when the compensation cylinder and the Coriolis line consist of the same material. Titanium is used regularly as a material for the Coriolis line, so that titanium also is recommended as a material for the compensation cylinder.
A further advantageous design of the mass flowmeter in accordance with the invention consists in having the Coriolis line and the compensation cylinder located within a second compensation cylinder connected mechanically with the Coriolis line. The disclosure of DE A-41 24 295, for example, is to be consulted with respect to the design of this second compensation cylinder. For example, the Coriolis line can be located within the second compensation cylinder under initial tensile stress.
If, in accordance with one design of the invention, the oscillation generator is located between the compensation cylinder and the Coriolis line, this ensures that the compensation cylinder and the Coriolis line in each case oscillate in the manner of a tuning fork.
In the case of corresponding accommodation of the oscillation properties of the compensation cylinder and the Coriolis line, the oscillation opposite to each other in the manner of a tuning fork also is ensured when the oscillation generator is located between the second compensation cylinder and the compensation cylinder.
If, in accordance with a further advantageous design, the sensors are located between the compensation cylinder and the Coriolis line, an espe

REFERENCES:
patent: 4127028 (1978-11-01), Cox et al.
patent: 4803867 (1989-02-01), Dahlin
patent: 4823614 (1989-04-01), Dahlin
patent: 5365794 (1994-11-01), Hussain et al.
patent: 5398554 (1995-03-01), Ogawa et al.
patent: 5531126 (1996-07-01), Drahm

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mass flow rate measuring instrument does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mass flow rate measuring instrument, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mass flow rate measuring instrument will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1475819

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.