Toilet – Hair device – Eyelash or eyebrow
Reexamination Certificate
2002-02-14
2004-11-02
Spisich, Mark (Department: 1744)
Toilet
Hair device
Eyelash or eyebrow
C132S320000, C015S206000, C015S207200
Reexamination Certificate
active
06810885
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a brush for applying cosmetic products, in particular, mascara, to eyelashes.
BACKGROUND OF THE INVENTION
Twisted wire brushes for application of liquid-type cosmetics, such as for application of mascara to the eyelashes, are well known in the art. The brushes are designed to pick up and hold a supply of mascara from the cosmetic container, and then deliver the mascara to the eyelashes as the brush is combed through the lashes by the user.
Twisted wire brushes conventionally are manufactured by disposing a plurality of individual lengths of bristles transverse to and between substantially parallel, slightly spaced-apart thin metal wire lengths, such that the wire lengths generally bisect the filament lengths at their midpoints. Most typically, the parallel wire lengths comprise the two substantially equal leg lengths formed from bending a single length of wire into a U-shaped configuration. The wire lengths are then twisted together to form a helical core, causing the bristles disposed between the wires to be clamped therebetween at about their midpoints. In the twisting and clamping, the segments of the bristles on either side of the clamped midpoint are caused to flare radially outward from the core and so form an elongate bristle brush portion of generally circular cross-section. The brush is generally provided with a handle which can comprise, or be affixed to, a cap or other closure for the cosmetic container.
It is known in the art that this helical wire twisting method for forming cosmetic applicator brushes typically leads to a brush configuration in which the bristles tend generally to follow the helical pattern of the twisted wire core, i.e., whereby the tips of the bristles define a helix. The degree of axial spacing between turns of the helix varies depending on the number, type and thickness of bristles employed, the wire thickness employed, the number of helical twists used in forming the wire core, and other like factors. See, for example, U.S. Pat. No. 4,887,622% to Gueret, and U.S. Pat. No. 4,733,425 to Hartel et al.
The bristles are usually comprised of nylon filaments. The bristles serve the function of collecting mascara from a reservoir and holding the mascara until it is applied to the user's eyelashes. Standard mascara brush designs of the 1960s and 1970s used smaller diameter bristles in fairly large numbers of bristles per turn. At the time, it was believed that this provided superior performance in that the brush was fairly soft, and capable of a fairly high loading with mascara. Thus typical mascara brushes of this period had filaments having a diameter 0.005 inch (5 mil) or less and bristle counts of 50 bristles per turn (which means 100 bristle ends per turn of the helix).
The state of the art then evolved to a somewhat larger diameter bristle, as defined in U.S. Pat. No. 4,887,622 entitled “Brush for the Application of Mascara to the Eyelashes.” The patent discloses a mascara brush having a reduced number of bristles, said to be 35% to 80% less than in conventional mascara brushes, ostensibly of larger diameter, than the bristles employed in conventional mascara brushes at the time. This was believed to provide a better application of mascara and separation of lashes. The patent specifies mascara brushes having a bristle diameter from about 0.10 to 0.25 mm (e.g. about 0.004 to 0.010 inch) (4 mil to 10 mil) and with from approximately 10 to 40 bristles per turn of the helix.
The concept of a mascara brush having larger diameter fibers was further discussed in a recent PCT application No. PCT/US01/04555. This application is directed towards mascara brushes made from filaments that are relatively large but soft. Specifically, the application describes mascara brushes having preferably having 7-14 bristles per turn. The bristle filaments are defined as preferably being from 0.010 inch to 0.013 inch (10 mil to 13 mil). Most critically, the bristles are defined as being relatively soft being made of a thermoplastic elastomer having a durometer of between 62 Shore D and 82 Shore D, but most preferably about 72 Shore D. PCT application PCT/US01/04555 essentially defines a mascara brush made with a duPont Filaments filament sold under the trademark “Supersoft.” The “Supersoft” filaments have a durometer of 72 Shore D and are available as solid filaments or as triocular filaments having three hollow voids.
Mascara, which is typically highly viscous, tends to clump when applied to eyelashes. The clumps of mascara are typically combed out as a finishing step to the application process. Stiffer bristles are thought to be better suited for combing out clumps and properly separating lashes. However, the combing and separating functions are thought to be better accomplished with brushes a having relatively open bristle envelope or brush surface, i.e., an envelope or surface that has numerous or wide clearances or spaces between bristles to make the brushes more ‘comb-like’. This function is not well served by traditional mascara brush designs having smaller diameter bristles with higher bristle density.
A mascara brush with softer, more numerous bristles has been generally thought to be well suited for applying mascara but less well suited for combing out clumps and separating lashes. Conversely, a brush with stiffer, fewer bristles has been thought to be well suited for combing and separating lashes but less well suited for applying mascara to lashes. While a separate brush can be used for each function, i.e., a soft brush for application and a stiff brush for combing, a single brush that can both apply mascara and comb out clumps would be preferred for the convenience of the user.
An example of a brush that is said to provide good application and combing characteristics is shown in U.S. Pat. No. 4,861,179 to Schrepf et al., which discloses a brush having a combination of conventional soft bristles and conventional stiff bristles.
Another example of a brush said to provide good application and combing characteristics is shown in U.S. Pat. No. 5,238,011 to Gueret. The Gueret patent discloses bristles made of a soft material having a shore hardness of 20A to 40D (as noted above, a conventional bristle typically has a durometer of over 85D), and a large diameter in a range of 0.004 inch to 0.014 inch (4 to 14 mil) (0.10 to 0.35 millimeter). As disclosed by Gueret, the diameter is said to be sufficiently large to prevent too high a degree of suppleness. The resulting brush is said to have the same degree of suppleness or softness as a conventional softer brush. Accordingly, the bristles are equivalent in stiffness to conventional bristles.
While the forgoing brushes may be suitable for the application and combing of mascara in use at the time, current mascara formulations have significantly higher viscosity, in the range of 2,000,000 centipoise and above. Higher viscosity mascaras tend to collapse softer durometer bristles, so they are not effective for their intended use.
Thus, there is a need for a brush that can apply mascara from a bottle to the user's eyelashes, uniformly and in desired amounts, and comb out any undesired excess while separating eyelashes, and which is suited for modern mascara formulations.
SUMMARY OF THE INVENTION
An improved mascara brush has a typical twisted wire core containing bristles having a high durometer and relatively large diameter. The bristle density is in the range of 8 to 20 bristles per turn; more preferably 10-15 bristles per turn, and most preferably 12-14 bristles per turn. The bristles have a diameter of from 0.010 inch to about 0.016 inch, preferably 0.011 inch to 0.014 inch, and most preferably 0.011 or 0.012 inch. The bristle durometer, determined by the durometer of the filaments from which the bristles are made, is in the range of about 92 Shore D hardness to 120 Rockwell R; most preferably about 100 to 120 Rockwell R; and in one preferred embodiment, the filaments have a durometer of 108 Rockwell R.
It is believed that the surprising and improved cap
LeGassie Raymond P.
Montoli Antonio
Crown Cork & Seal Technologies Corporation
Spisich Mark
St. Onge Steward Johnston & Reens LLC
LandOfFree
Mascara brush with high durometer fibers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Mascara brush with high durometer fibers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mascara brush with high durometer fibers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3313408