Stock material or miscellaneous articles – All metal or with adjacent metals – Having magnetic properties – or preformed fiber orientation...
Reexamination Certificate
2003-09-26
2004-10-12
Koehler, Robert R. (Department: 1775)
Stock material or miscellaneous articles
All metal or with adjacent metals
Having magnetic properties, or preformed fiber orientation...
C116S204000, C148S120000, C148S121000, C148S309000, C148S310000, C148S311000, C335S296000, C340S568100, C428S636000, C428S637000, C428S638000, C428S686000, C428S900000, C428S928000
Reexamination Certificate
active
06803118
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is directed to a marker for use in a magnetic anti-theft security system. The marker is of a type composed of an oblong alarm strip composed of an amorphous ferromagnetic alloy, and at least one activation strip composed of a semi-hard magnetic alloy.
Magnetic anti-theft security systems and markers for security systems of the above type are well known and are described in detail in, for example, EP 0 121 649 B1 and WO 90/03652. First, there are magneto-elastic systems wherein the activation strip serves for activation of the alarm strip by magnetizing it; second, there are harmonic systems wherein the activation strip, after being magnetized, serves for the deactivation of the alarm strip.
The alloys with semi-hard magnetic properties that are employed for the pre-magnetization strip include Co—Fe—V alloys, which are known as VICALLOY, Co—Fe—Ni alloys, which are known as VACOZET, as well as Fe—Co—Cr alloys. These known semi-hard magnetic alloys contain high cobalt parts, some at least 45 weight %, and are correspondingly expensive.
In addition, while in their magnetically finally annealed condition, these alloys are brittle, so that they do not exhibit adequate ductility in order to adequately meet the demands given markers or display elements for anti-theft security systems. One important demand, namely, is that these activation strips should be insensitive to bending or deformation.
In the meantime, a switch has been made to introduce the markers of the anti-theft security systems directly into the product to be secured (source tagging). Such source tagging imposes the additional demand that the semi-hard magnetic alloys should be able to be magnetized from a greater distance or with smaller fields. To satisfy this additional demand, it has been shown that the coercive force H must be limited to values of, at most, 24 A/cm.
On the other hand, however, an adequate opposing field stability is also required, which determines the lower limit value of the coercive force. Only coercive forces of at least 10 A/cm are thereby suited.
Further, the remanence should be optimally slight under bending or tensile strength. A change of less than 20% is prescribed as a guideline.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a marker of the above-described type for a magnetic anti-theft system, having an activation strip which satisfies the above demands for source tagging.
This object is inventively achieved in a marker having an activation strip composed of a semi-hard magnetic alloy comprising 8 to 25 weight % nickel, 1.0 to 4.5 weight % aluminum, 0.5 to 3 weight % titanium and the balance iron.
In a preferred embodiment of the invention, the content of aluminum is between 1.2 and 2.8 weight %. Optimum results are achieved with a content of aluminum between 1.5 and 2.8 weight %.
For best results, the content in weight % of nickel, aluminum and titanium should satisfy the following formula:
35≦Ni(1,75Al+Ti)≦110, preferably 40≦Ni(1,75Al+Ti)≦90.
The alloy can further contain 0 to 5 weight % cobalt and/or 0 to 3 weight % molybdenum or chromium and/or at least one of the elements Zr, Hf, V, Nb, Ta, W, Mn, Si in individual parts of less than 0.5 weight % of the alloy and in an overall part of less than 1 weight % of the alloy and/or at least one of the elements C, N, S, P, B, H, O in individual parts of less than 0.2 weight % of the alloy and in an overall part of less than 1 weight % of the alloy.
The alloy is characterized by a coercive strength H
c
of 10 to 24 A/cm and a remanence B
r
of at least 1.3 T (13,000 Gauss).
The inventive alloys are highly ductile and can be excellently cold-worked before the annealing, so that cross-sectional reductions of more than 90% are also possible. An activation strip having a thickness of less than 0.05 mm can be manufactured from such alloys, particularly by cold rolling. In addition, the inventive alloys are characterized by excellent magnetic properties and resistance to corrosion.
A preferred alloy is a semi-hard magnetic iron alloy according to the present invention that contains 13.0 to 17.0 weight % nickel, 1.8 to 2.8 weight % aluminum as well as 0.5 to 1.5 weight % titanium. By reducing the aluminum content, the magnetostriction can, in particular, be especially favorably set.
Typically, the activation strips are manufactured by melting the alloy under a vacuum and then casting to form an ingot. Subsequently, the ingot is hot-rolled into a tape or ribbon at temperatures above 800° C., then intermediately annealed at a temperature above 800° C. and then rapidly cooled. A cold working, expediently cold rolling to provide a cross-sectional reduction of approximately 90% is followed by an intermediate annealing at approximately 700° C. A cold working, expediently cold rolling to provide a cross-sectional reduction of at least 60% and preferably 75% or more subsequently occurs. As a last step, the cold-rolled tape or ribbon is annealed at temperatures from approximately 400° C. to 600° C. The activation strips are then cut to length.
Other advantages and features of the invention will be readily apparent from the following description, the claims and drawings.
REFERENCES:
patent: 4743890 (1988-05-01), Hilzinger et al.
patent: 4945339 (1990-07-01), Yamauchi et al.
patent: 6157301 (2000-12-01), Radeloff et al.
patent: 6166636 (2000-12-01), Herget et al.
patent: 6663981 (2003-12-01), Weber et al.
patent: 35 45 647 (1987-06-01), None
patent: 0 121 649 (1984-10-01), None
patent: 0 316 811 (1989-05-01), None
patent: 2 104 099 (1983-02-01), None
patent: WO 90/03652 (1990-04-01), None
“A Study of Semihard Magnet Alloys for Latching Reed Relays, ” Tokuyoshi, IEEE Trans. On Magnetics, Sep., 1971, pp. 664-667.
“Connection between Structure and Magnetic Properties of a Magnetically Semi-Permanent FE-Ni-Al-Ti Alloy,” Wieser et al., Phys. Stat. Sol. (a), vol. 63 (1981) pp. 487-494, no month.
Hausch Gernot
Roth Ottmar
Weber Hartwin
Koehler Robert R.
Schiff & Hardin LLP
Vacuumschmelze GmbH
LandOfFree
Marker for use in a magnetic anti-theft security system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Marker for use in a magnetic anti-theft security system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Marker for use in a magnetic anti-theft security system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3284132