Marine drive trim cylinder with two stage damping system

Marine propulsion – Screw propeller – With means effecting or facilitating movement of propulsion...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C267S220000

Reexamination Certificate

active

06830492

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is generally related to a mounting system for a marine propulsion device and, more particularly, to a mounting system that exhibits two different degrees of stiffness in response to different ranges of force magnitude imposed on the system.
2. Description of the Prior Art
Many different types of mounting systems are well known to those skilled in the art. Typically, a mounting system which is intended to isolate vibration and prevent it from being transmitted along a structure comprises an elastomeric material, such as rubber, in combination with inelastic materials, such as metal or hard polymer materials.
U.S. Pat. No. 5,242,146, which issued to Tecco et al on Sep. 7, 1993, describes an engine mount having an improved vibration isolation capability. The mount is intended for the purpose of mounting an automotive vehicle engine to the automotive vehicle chassis. The mount comprises a vibration isolator portion which is designed with relatively low stiffness to provide increased vibration isolation. Excessive displacements are avoided by snubbers. Snubbing action in one direction is provided by a circular snubber that is disposed in spaced relation to the vibration isolator portion. Snubbing action in other directions is provided by the particular design of the vibration isolator portion. Embodiments of both a front and a rear engine mount are provided.
U.S. Pat. No. 5,172,894, which issued to Hein et al on Dec. 22, 1992, describes a dual elastomeric/fluid engine mount. The engine mount is described as having two concentrically disposed annular resilient rubber springs, the outermost of which is provided with a pair of cavities and connecting passageway for receiving a dampening fluid. The spring rates of the two rubber springs can be individually tuned by the use of voids or cavities. Thus, there is a threefold manner in which the spring rate of the engine mount can be tuned.
U.S. Pat. No. 5,044,598, which issued to Mann et al on Sep. 3, 1991, describes a resilient motor mounting structure. The motor mount is suitable for use as a vibrational isolating motor mount. The mount connects the motor to a support structure by using a support fixture and a motor stud separated by a flexible member. A plurality of portions of the flexible member surround the support fixture and motor stud to lessen vibrational transfer from the motor to the structure fixture and to lessen metal fatigue caused by metal to metal contact.
U.S. Pat. No. 3,770,232, which issued to Blake on Nov. 6, 1973, describes a shock and vibration isolation mount. The mount includes a resilient elastomeric portion coupled in shock attenuating series with a stacked plurality of dished, disc-shaped annular metal springs. Normal low level vibration is attenuated by the resilient elastomeric portion acting alone, whereas high intensity shocks of sufficient magnitude to compress the resilient elastomeric portion to a substantially incompressible form of near infinite spring constant are continually attenuated by the stacked metal springs.
U.S. Pat. No. 6,419,534, which issued to Helsel et al on Jul. 16, 2002, discloses a structural support system for an outboard motor. The systems is provided for an outboard motor which uses four connectors attached to a support structure and to an engine system for isolating vibration from being transmitted to the marine vessel to which the outboard is attached. Each connector comprises an elastomeric portion for the purpose of isolating the vibration. Furthermore, the four connectors are disposed in a common plane which is generally perpendicular to a central axis of a driveshaft of the outboard motor. Although precise perpendicularity with the driveshaft axis is not required, it has been determined that if the plane extending through the connectors is within forty-five degrees of perpendicularity with the driveshaft axis, improved vibration isolation can be achieved. A support structure, or support saddle, completely surrounds the engine system in the plane of the connectors. All of the support of the outboard motor is provided by the connectors within the plane with no additional support provided at a lower position on the outboard motor driveshaft housing.
U.S. Pat. No. 6,123,620, which issued to Polakowski on Sep. 26, 2000, discloses a multirate coupler with improved vibration isolation capability. A coupler is provided which responds to relative rotation of a driving and a driver shaft with variable rates of stiffness. As the two shafts experience slight degrees of relative rotation, such as at idle speed, the elastically deformable member of the coupler responds in a relatively soft manner with a slight degree of stiffness. As relative rotation increases because of the transmission of higher torque between the driving and driven shafts, the elastically deformable member responds with a stiffer reaction. The elastically deformable member also reacts in a similar manner with differing rates of stiffness to misalignment of the driving and driven shafts.
U.S. Pat. No. 6,287,159, which issued to Polakowski et al on Sep. 11, 2001, discloses a marine propulsion device with a compliant isolation mounting system. A support apparatus for a marine propulsion system in a marine vessel is provided with a compliant member that is attachable to the transom of a marine vessel. In certain applications, the compliant member is directly attached to an intermediate plate and to an external frame member that is, in turn, attached directly to the transom of the marine vessel. The intermediate plate is attached directly to components of the marine propulsion system to provide support for the marine propulsion system relative to the transom, but while maintaining non-contact association between the marine propulsion and the transom.
U.S. Pat. No. 5,707,263, which issued to Eick et al on Jan. 13, 1998, discloses an adjustable trim position system. A system for a trimable marine stern drive shifts the trimable range on a conventional hydraulic trim system. The system includes an enlarged cylinder anchor pin hole in the drive shaft housing, an anchor pin smaller in size than the enlarged pin hole located in the in the drive shaft housing, and a movable trim adjustment insert that is inserted into the enlarged anchor pin hole to secure the anchor pin in a fixed position within the enlarged hole. It is preferred that the enlarged anchor pin hole be a substantially horizontal elongated hole, and that the trim adjustment insert be placed rearward of the anchor pin to position the anchor pin in a forward position, or forward of the anchor pin to locate the anchor pin in a rearward direction. The invention shifts the trimable range of the drive, while maintaining vibration isolation characteristics available in conventional hydraulic trim systems.
U.S. Pat. No. 6,309,264, which issued to Saito on Oct. 30, 2001, describes a cylinder assembly for a marine propulsion unit. An improved hydraulic cylinder arrangement for a marine propulsion unit permits primarily effective tilt and trim movement through a compound tilt and trim cylinder. At least one first shock absorber valve is provided on a tilt piston and at least one second shock absorber valve is provided on a tilt cylinder that acts as a trim piston in a trim adjusted range operation. In another feature of the invention, a filter is disposed upstream of the second shock absorber valve.
U.S. Pat. No. 6,280,268, which issued to Nishi et al on Aug. 28, 2001, describes a tilt device for a marine propulsion unit. A tilt device for a marine propulsion unit is disclosed where a shock blow valve comprises a disk valve fixed to a valve seat surface of the piston, the valve seat surface being provided with a seal member surrounding a communication hole which opens at the valve seat surface, and the disk valve is tightly connected to the seat member.
The patents described above are hereby expressly incorporated by reference in the description of the present invention.
Various types of elastomeric m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Marine drive trim cylinder with two stage damping system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Marine drive trim cylinder with two stage damping system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Marine drive trim cylinder with two stage damping system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3308891

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.