Manufacturing method of food additive composition and food...

Food or edible material: processes – compositions – and products – Product with added plural inorganic mineral or element...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S518000

Reexamination Certificate

active

06808726

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a manufacturing method of a food additive composition and a food composition containing the same, and more particularly, to a manufacturing method of a food additive composition extremely excellent in dispersion stability to be used effectively for reinforcing minerals by addition to foods such as yogurt, milk, juice, cream for coffee, powdered milk and candies, and a food composition containing such food additive composition obtained by the same method.
2. Description of the Prior Art
Recently, shortage of uptake of calcium, magnesium, iron and the like is pointed out, and this tendency is prominent among growing children and elder people.
Calcium is not only important for growth of bones, but also plays a vital role for contracting and expanding muscles and maintaining the homeostasis in the body. Moverover, magnesium acts to relax and dilate the muscles and blood vessels, and it is an indispensable mineral for the human. Deficiency of magnesium is considered to lead to hypertension, angina pectoris, hyperlipidemia, and other diseases. At the same time, magnesium is closely related with metabolism of calcium, and its shortage causes various symptoms due to dysbolism. Further, magnesium is related to various enzymatic reactions, and is said to maintain the homeostasis in the body. However, in recent years, people come to prefer European style eating habit and highly refined cereals, and the majority of magnesium is lost in the food refining process and it tends to be lacking in the eating life of the present days, and magnesium-enriched food is attracting attention lately.
Further, anemia due to iron shortage is widely reported among women recently. This tendency is particularly notable among schoolgirls and young women. Asiderotic anemia is mainly attributable to eating habit, but women are more vulnerable onset of anemia by iron shortage owing to physiological menstruation, increase of iron demand due to pregnancy, or shortage of uptake by extreme diet, and generally approximately half of women are in shortage of iron. To solve this iron shortage problem, iron-enriched foods have been commercially available, and milk and carbonated beverages of higher iron contents are started to be sold widely.
To compensate such shortage of uptake of various minerals, mineral-enriched foods are distributed, and even in the cow milk that is generally high in mineral contents, further minerals are added, and mineral-enriched milk products are supplied, and many other mineral-enriched products of juice and powdered milk are also on market.
In milk and yogurt, for example, with the purpose of reinforcing in minerals, water soluble inorganic or organic minerals such as calcium lactate, calcium chloride, magnesium chloride, and ammonium ferric citrate, or water insoluble inorganic minerals such as calcium carbonate, calcium phosphate, dolomite, and ferric pyrophosphoric acid are added and used. However, water soluble inorganic or organic minerals are likely to impair the stability of protein in the milk or yogurt, and it is hard to contain more than a certain amount, and they cannot be used abundantly as mineral materials. Besides, the peculiar bitter taste is also a problem.
On the other hand, water insoluble inorganic minerals are not soluble in water and do not disturb the stability of protein in the milk or yogurt, and high contents can be added, but the specific gravity of inorganic minerals is generally as high as 2.1 or higher, and they sediment in a short time when dispersed in milk, and the appearance of food is inferior, and hence the amount added is limited, which results in having a drawback that they cannot be added plentifully.
Various methods have been proposed so far in order to add high contents of calcium in food by overcoming these problems, and, for example, Japanese Unexamined Patent Publication No. Hei 9-9911 discloses a method of improving the dispersion by adding at least one selected from the group consisting of phospholipids and proteolytes to calcium carbonate, and grinding in a wet process. In this method of adding phospholipids or proteolytes, however, since the phospholipids have a peculiar smell and bitterness, the problem in flavor is serious, and according to this publication, the average particle size of calcium dispersion is 1 to 3 &mgr;m, and the milk containing calcium carbonate obtained by this method is poor in the yield of calcium carbonate in the clarifier or other centrifugal classifiers in the manufacturing process, and it is likely to sediment in milk or other food products, and hence it is far from ideal for application in long-term preservative food such as long-life milk.
In Japanese Unexamined Patent Publication No. Sho 55-84327, it is proposed to obtain a mineral-enriched substance by mixing (1) a cation supply source selected from the group consisting of calcium, magnesium, iron, copper, boron, zinc, manganese, molybdenum, arsenic, silver, aluminum, barium, bismuth, mercury, nickel, lead, platinum, antimony, and tin, (2) an alkali phosphate supply source selected from the group consisting of potassium phosphate, dipotassium hydrogenphosphate, mixtures of alkali metal hydroxide and phosphoric acid, and alkali metal hydrogenphosphate, and (3) an organic acid containing at least three carboxyl groups, in the sequence of the cation supply source, the alkali phosphate supply source, and finally the organic acid source. In the dispersion state of the food additive composition prepared in such adding sequence, according to the publication, the theoretical effective utilization rate of minerals is not sufficient, and the milk containing the food additive composition obtained by this method is, just as in Japanese Unexamined Patent Publcaiton No. Hei 9-9911, poor in the yield of calcium compounds in the clarifier or other centrifugal classifiers in the manufacturing process, and it is likely to sediment in milk or other food products, and hence it is far from ideal for application in long-term preservative food.
Lately, along with progress in the container and storage method capable of preserving liquid food products such as milk, yogurt and juice for a long term, more and more food products are stored for a longer period in retail shops, vending machines, and large household refrigerators, and calcium carbonate particles added in these foods for enriching calcium contents may sediment in the bottom of the food containers during long-term storage if the dispersion state in the foods is not favorable, and the sediments may give impression of discomfort or uncleanness to the consumers when taking such milk, juice and liquid food products.
Therefore, existing commercial liquid food products containing inorganic particles of calcium carbonate or the like prepared by the prior art for the purpose of enriching calcium contents are short in stable dispersion period of inorganic particles in food, and the content of inorganic particles must be limited to a minimum, and the use is limited to liquid foods to be consumed within one or two days after purchase by consumers.
SUMMARY OF THE INVENTION
In the light of this background, it is hence an object of the invention to solve these problems in the prior art, and to provide a manufacturing method of food additive composition extremely excellent in dispersibility preferably used as additives to food such as yogurt, milk, juice, cream, powdered milk and candies, and a food composition containing the food additive obtained by such method.
A first aspect of the present invention relates to a method for manufacturing a food additive slurry composition containing a polyvalent metal, a phosphoric acid ion, an organic acid having a carboxyl group, and alkali metal, comprising the steps of:
preparing a precursor by mixing water, a polyvalent metal compound, and an organic acid having a carboxyl group, and
adding a phosphoric acid source and an alkali metal in at least one method selected from the group consisting of (a), (b), (c), (d), an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Manufacturing method of food additive composition and food... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Manufacturing method of food additive composition and food..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Manufacturing method of food additive composition and food... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3264368

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.