Manufacturing method and manufacturing apparatus of image...

Electric lamp or space discharge component or device manufacturi – Process – With assembly or disassembly

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06634916

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a manufacturing method and a manufacturing apparatus of an image displaying apparatus, and more specifically an image displaying apparatus which is configured by sealing a face plate composing a display surface of a display panel to a rear plate which is disposed in opposition to the above described face plate with a gap interposed to compose a rear surface of the above described display panel.
2. Related Background Art
There are conventionally known electron-emitting devices which are roughly classified into thermal electron-emitting devices and cold cathode electron-emitting devices. The cold cathode electron-emitting devices include field emission type (hereinafter referred to as an FE type) electron-emitting devices, metal/insulating layer/metal type (hereinafter referred to as an MIM type) electron-emitting devices, surface conduction electron-emitting devices or the like.
Known as examples of the FE type electron-emitting devices are those which are disclosed by W. P. Dyke & W. W. Dolan, “Field Emission”, Advance in Electron Physics, 8, 89 (1956), C. A. Spindt, “PHYSICAL Properties of thin-film field emission cathodes with molybdenum cones”, J. Appl. Phys., 47, 5248 (1976) or the like.
Known as examples of the MIM type electron-emitting devices are those which are disclosed by C. A. Mead, “Operation of Tunnel-Emission Devices”, J. Appl. Phys., 32, 646 (1961) or the like.
Known as examples of the surface conduction electron-emitting devices are those which are disclosed by M. I. Elinson, Radio Eng. Electron Phys., 10, 1290 (1965) or the like.
The surface conduction electron-emitting devices utilize a phenomenon that electrons are emitted when a current is supplied through a thin film having a small area formed on a substrate in a direction in parallel with a surface of the film. Reported as the surface conduction electron-emitting devices are those which use SnO
2
thin films contrived by Elinson et al., those which use Au thin films [G. Dittmer: “Thin Solid Films,” 9, 317 (1972)], In
2
O
3
/SnO
2
thin film [M. Hartwell and C. G. Fonstad: “IEEE Trans. ED Conf.”, 519 (1975)], those which use carbon films [Hisashi Araki, et al. “Vacuum”, vol, 26, No. 1, p22 (1983)] or the like.
Used for manufacturing an image displaying apparatus which uses electron-emitting devices such as those described above are steps of preparing an electron source substrate (rear plate) on which these electron-emitting devices are arranged in a matrix and a phosphor substrate (face plate) mounted with a phosphor which emits rays when excited by an electron beam, disposing an envelope providing a vacuum seal structure and a spacer providing an atmospheric pressure resistant structure so that the electron-emitting devices and the phosphor are set inside, arranging the face plate and the rear plate in opposition to each other, sealing an interior using a material having a low melting point such as frit glass as a sealing agent, evacuating the interior to a vacuum through a preliminarily disposed vacuum exhaust pipe and sealing the vacuum exhaust pipe.
A manufacturing method which uses the above described conventional technique requires a remarkably long time for manufacturing a display panel and is not suited to manufacturing of a display panel which requires an internal vacuum degree of 10
−6
Pa or more depressurized level.
This problem of the conventional technique is solved, for example, by a method disclosed by Japanese Patent Application Laid-Open No. 11-135018.
The method disclosed by the above-mentioned Japanese Patent Application Laid-Open No. 11-135018 uses only steps of positioning a face plate and a rear plate in a single vacuum chamber and sealing these two a bake processing, a getter processing, an electron beam clean processing or the like which are other steps required for manufacturing the above described display panel must also be carried out in vacuum chambers respectively and the face plate and the rear plate are moved among the vacuum chambers while introducing atmosphere, each of the vacuum chamber is evacuated to vacuum each time the face plate and the rear plate are conveyed into the vacuum chambers, and a long time is required for the manufacturing steps, whereby it is demanded to remarkably shorten the time for the manufacturing steps and simultaneously obtain a high vacuum degree of 10
−6
Pa or more depressurized level at a final manufacturing step.
SUMMARY OF THE INVENTION
An object of the present invention is to shorten a time required for evacuation into a vacuum in manufacturing an image displaying apparatus and facilitate to obtain a higher vacuum degree, thereby enhancing a manufacturing efficiency.
The present invention provides a manufacturing method of an image displaying apparatus comprising steps of conveying panel member for composing a panel of an image forming apparatus consecutively into a plurality of processing chambers equipped with temperature control means respectively and set in depressurized conditions, subjecting to a plurality of processings the above described panel member while controlling temperature and forming a panel by sealing the above described panel members, characterized in that: the above described plurality of processing chambers include a bake processing chamber for bake processing of the above described panel member, a getter processing chamber into which the above described panel member is conveyed after the above described bake processing and in which a getter processing is performed on the above described panel members, and the above described getter processing is performed with the panel member in the above described getter processing chamber set at a temperature lower than a temperature of the panel members subjected to the bake processing in the above described bake processing chamber.
Furthermore, the present invention provides a manufacturing method of an image forming apparatus comprising steps of conveying panel member for composing a panel of an image forming apparatus consecutively into a plurality of processing chambers equipped with temperature control means respectively and set in depressurized conditions, subjecting to a plurality of processings the above described panel member while controlling temperature and forming a panel by sealing the above described panel member, characterized in that: the above described plurality of processing chambers include a bake processing chamber for bake processing of the above described panel members, a surface clean processing chamber into which the above described panel member is conveyed after the above described bake processing and in which a surface clean processing is performed on the above described panel member, and a getter processing chamber into which the above described panel member is conveyed after the above described surface clean processing and in which the getter processing is performed on the above described panel member, and the above described getter processing is performed with the above described panel member in the above described getter processing chamber set at a temperature lower than a temperature of the panel member subjected to the bake processing in the above described bake processing chamber.
Furthermore, the present invention provides a manufacturing method of an image displaying apparatus comprising steps of conveying panel member for composing a panel of an image displaying apparatus consecutively into a plurality of processing chambers equipped with temperature control means respectively and set in a depressurized conditions, subjecting to a plurality of processings the above described panel member while controlling temperature and forming a panel by sealing the above described panel members, characterized in that: the above described plurality of processing chambers include a bake processing chamber for bake processing of the above described panel member, a first getter chamber into which the above described panel members ar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Manufacturing method and manufacturing apparatus of image... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Manufacturing method and manufacturing apparatus of image..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Manufacturing method and manufacturing apparatus of image... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3149807

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.