Manufacture of polysulfones

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From phenol – phenol ether – or inorganic phenolate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C568S034000

Reexamination Certificate

active

06548622

ABSTRACT:

FIELD OF THE INVENTION
Polysulfones are manufactured by the carboxylicacid anhydride “promoted” reaction of sulfuric acid or sulfur trioxide with an electron rich aromatic compound which behaves as a difunctional (bireactive) compound.
TECHNICAL BACKGROUND
Polysuifones, especially aromatic polysulfones, are important engineering polymers, often having the advantages of chemical resistance, good high temperature properties, good tensile properties, and others. Typical engineering polysulfones are
Polysulfones may be mad e using Friedel-Craots chemistry. For example, (I) is prepared by reacting 4-biphenylsulfonylchroride with a strong Lewis acid such as aluminum chloride or iron trichloroide. This method has the disadvantage of requiring stoichometric amounts of the Lewis acid catalyst. This catalyst must be removed from the polymer and be discarded or otherwise used. Alternately, polysulfones may be prepared by nucleophilic aromatic substitution chemistry. For example, (II) may be prepared by the homopolymerization of 4-chloro-4′-hydroxydiphenylsulfone, while (III) may be prepared by reaction of the disodium salt of bisphenol A with 4,4′-dichlorodiphenylsulfone. The primary disadvantage of this route is the high cost of the chloride-containing monomers. In addition, production of chloride byproducts which must be properly disposed of is also a drawback of the method.
Reported herein is a method which avoids the drawbacks of the methods described above. In this method, sulfuric acid or sulfur trioxide is reacted with a carboxylic acid anhydride to produce a bisacylsulfate, referred to hereinafter as BAS. BAS is a dielectrophile, that is, it can react twice with nucleophilic compounds. The nucleophile may be an aromatic compound which preferably is electron rich. Use of a nucleophile which can only react once will produce an aromatic sulfonic acid or a diaryl sulfone, depending on the ratio of BAS to nucleophilic aromatic compound used. See for example T. E. Tyobeka, et al.,
J.C.S., Chem. Comm
. 1980, p. 114-115, and R. A. Hancock, et al.,
J. Chem. Research
(S), 1980, p. 270-271. As described herein, if an aromatic nucleophile which can react twice is used it will result in a polysulfone polymer if a 1:1 ratio of the dinucleophile and BAS is used. The byproduct of the reaction is the corresponding carboxylic acid of the carboxylic anhydride. The byproduct acid may be converted back to the original anhydride which then may be recycled back into the process.
SUMMARY OF THE INVENTION
This invention concerns, a process for the production of polysulfones, comprising, contacting an aromatic compound which is bireactive, one or both of sulfuric acid and sulfur trioxide, and a carboxylic acid anhydride.
DETAILS OF THE INVENTION
By hydrocarbyl herein is meant a univalent radical containing carbon and hydrogen, while substituted hydrocarbyl means hydrocarbyl substituted with one or more functional groups (including complete replacement of the hydrogens). By hydrocarbylene is meant a divalent group containing only carbon and hydrogen containing two free valences to different carbon atoms. By hydrocarbylidene is meant a groups containing carbon and hydrogen with two free valences to the same carbon atoms, each of these valences bound to a different atom. By substituted hydrocarbylene is meant a hydrocarbylene group substituted with one or more functional groups, and in which all of the hydrogens may be replaced. It is preferred that all of these groups have 1 to 30 carbon atoms.
By a “bireactive” compound herein is meant a compound, such as an aromatic compound, in which substantially all molecules of that compound will each react twice in the sulfone forming polymerization process. Since normally the “reactive group” in such a compound is a hydrogen bound to a carbon atom, which is not usually thought of as a functional group, the term bireactive is used. If it is unknown whether a particular compound is bireactive a simple test reaction with a model compound under the appropriate reaction conditions will determine whether it is bireactive.
By an “aromatic compound which is bireactive” is meant a compound which contains at least one aromatic ring, and which is bireactive. This compound may contain more than one aromatic ring. If more than one aromatic ring is present it may be a fused ring system such as found in naphthalene or anthracene, a ring system connected directly by a covalent bond, such as is found in biphenyl, or a ring system connected through another group, such as is found in diphenyl ether, diphenylmethane, and 2,2-diphenylpropane. Other groups may be present on the aromatic rings so long as they do not interfere with the sulfone forming polymerization reaction. It is preferred that the aromatic rings are carbocyclic rings. It is also preferred that the aromatic ring or rings of this compound are naphthyl ring systems or phenyl ring(s), more preferably phenyl rings.
T. E. Tyobeka, et al.,
Tetrahedron
1988, 44(7), p. 1971-1978 postulate that the sulfone forming reaction is an electrophilic attack on an aromatic ring of the bireactive compound. It is well known in the art that in such electrophilic reactions a substrate, such as the bireactive compound, is more reactive the more “electron-rich” it is. Aromatic rings can be made more electron rich by having electron donating substituents attached to these rings. Such substituents include groups such as ether, alkyl, and tertiary amino, and are well known in the art. The presence of such groups will tend to make the bireactive compounds more reactive and ensure that it is in fact bireactive instead of monoreactive. Useful compounds for the bireactive compound include naphthalene, methylnaphthalene, methoxynaphthalene, benzyl ether, stilbene, diphenyl carbonate, benzyl phenyl ether, biphenyl, and a compound of the formula
wherein R
1
is—O—(diphenyl ether), alkylidene (for example —CH
2
—, —CH
2
CH
2
—, or (CH
3
)
2
C<), and R
3
is hydrocarbylene, substituted hydrocarbylene or hydrocarbylidene, more preferably alkylene or alkylidene. Preferred bifunctional compounds are (IV), especially when (IV) is diphenyl ether. Useful groups for R
3
include 1,2-ethylene, 1,3-phenylene and 1,4-phenylene. More than one bireactive aromatic compound may be present to give a copolysulfone.
Any carboxylic acid anhydride may be used. Carboxylic acid anhydride here has the usual meaning, a compound of the formula R
2
C(O)O(O)CR
2
wherein each R
2
is independently hydrocarbyl or substituted hydrocarbyl. It is preferred that both of R
2
are the same. It is preferred that Hammett &sgr;
m
for each of R
2
is about 0.2 or more, more preferably 0.4 or more. Hammett &sgr;
m
constants are well known in the art, see for instance C. Hansch, et al., Chem. Rev., vol. 91, p. 185ff (1991). Preferred groups for R
2
are perfluoroalkyl, and perfluoromethyl is especially preferred.
Sulfuric acid and/or sulfur trioxide may be used as the “source” of the sulfonyl group. Particularly if sulfur trioxide is used, it may also be used to form the carboxylic acid anhydride present by dehydration of the corresponding carboxylic acid.
The molar ratio of the aromatic compound which is bireactive to the total of sulfuric acid and sulfur trioxide should preferably be about 1:1, and more preferably about 1.0:1.0, and especially preferably about 1.00:1.00, to achieve higher molecular weight polymer. This is a usual ratio for most condensation polymerizations to achieve higher molecular weight polymer. The molar ratio of carboxylic acid anhydride to sulfuric acid is preferably at least about 2:1, more preferably about 2:1 to about 4:1. The molar ratio of carboxylic acid anhydride to sulfur trioxide is at least about 1:1, preferably about 1:1 to about 2:1. The molar ratios of carboxylic acid anhydride to sulfuric acid and carboxylic acid anhydride to sulfur trioxide are not critical, but these preferred ratios make the most efficient use of the reagents.
The pressure at which the process is run is not critical, autogenous (for processes in which the boili

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Manufacture of polysulfones does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Manufacture of polysulfones, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Manufacture of polysulfones will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3062320

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.