Manual reporting of location data in a mobile communications...

Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S357490, C342S357490

Reexamination Certificate

active

06225944

ABSTRACT:

TECHNICAL FIELD
The present invention generally relates to wireless communication networks, including cellular-type wireless networks, and more particularly to the positioning of a mobile phone with a Location Determination Units (Such as Global Positioning System (GPS) receivers and GPS-like receivers).
BACKGROUND OF THE INVENTION
Wireless communication networks continue to evolve with enhanced and new features being developed for deployment in current and future generation networks. One particular area of development resides in the area of positioning a mobile station within a wireless network quickly, with high accuracy, and with nominal network traffic. By government mandate, future networks must be able to provide location information with emergency (E-911) calls.
For example, in the United States of America, the Federal Communications Commission (FCC) has mandated that mobile phone handsets provide location information to a Public Safety Answering Point (PSAP) which is the public facility which receives and processes emergency calls. The FCC specifications require positioning to an accuracy of less than 50 meters. This allows emergency personnel or police to be able to locate and help the caller in cases where the caller may not know his/her location, or when he may be unable to speak.
It is often desirable to position mobile phones on demand as well. For example, on demand mobile phone positioning is finding acceptance in commercial applications, such as in fleet management for rental car fleets, and to obtain position on demand to aid in navigation.
Unfortunately, the positioning of a mobile phone is particularly difficult due to a several factors. First, positioning of a mobile phone is encumbered due to multi-path problems as well as the fading of signals, which make simple triangulation measurements unreliable enough for high accuracy calculations. Time of Arrival (TOA) techniques measure the time it takes to receive synchronized signals that are broadcast from various known points, such as Base Stations (BSs). The TOA information is sent back to a network node, such as a Mobile Switching Center (MSC), which uses an algorithm to roughly determine the position of a mobile. Unfortunately, these techniques can only provide the general position of a mobile phone, and will often fail to meet the high resolution requirements mandated by government agencies.
Mobile phones having Global Positioning System (GPS) receivers therein are one viable solution to providing a position of a mobile phone with high accuracy. GPS is based on triangulating, along lines of sight, with at least three of the many GPS satellites that circle the earth that were launched by the US Government beginning in 1978. GPS is a well-known technology and is used in many military and civilian applications. The resolution of GPS meets the requirements of both the FCC-mandated E-911 service, as well as other market-driven demands. Accordingly, the most common method of providing location data is to have mobile phones with GPS receivers therein.
However, in order to be useful, this geographic information must be communicated to the PSAPs, and the PSAP must be able to process it. Efforts are underway to standardize methods and systems to automatically transmit coordinate information to the PSAPs. Amazingly, although there is a FCC mandate that the carriers must provide location information, there is no FCC mandate that the PSAPs be able to receive it. This may be because the hardware equipment and software upgrades needed to be able to receive the location information at the PSAP will likely be expensive, and thus deployment of location technology within PSAPs may be slow.
Since it may be some time before PSAPs can incorporate location equipment, mobile phones with GPS capability may be sold on the consumer's belief that the mobile phone will provide location information for emergency calls, but in many cases the PSAP that receives an emergency call will not be able to process the information. This will likely cause consumer irritation, or possibly lawsuits. Therefore, what is needed is a system and method of transmitting coordinate information for a mobile phone to a PSAP that uses equipment already available at the PASP.
SUMMARY OF THE INVENTION
The present invention achieves technical advantages as a method, mobile phone and computer program that allows for the manual reporting of location data in a mobile communication network. The method gathers location information from a Global Positioning System (GPS) receiver and then converts the location information into a Teletype/Telephony Device for the Deaf (TTY/TDD) format before transmitting the location information. The mobile phone has the devices needed to implement the method, particularly, a TTY/TDD synthesizer. The computer program implements the method through modular programming. Accordingly, the present invention provides the ability to provide quality location information with currently available equipment.
In one embodiment, the present invention is a method of reporting the location of a mobile phone by locating a Global Positioning System (GPS) receiver in a mobile communications network. The method first determines the location of the GPS receiver, which is integrated into the mobile phone. Next, the location is processed and the data identifying the location is designated as location information. Then, the location information is synthesized into a Tele-type (TTY/TDD) compatible format and transmitted as a TTY/TDD transmission. A TTY/TDD device at a receiving station will process the location data to identify the location of the mobile phone.
In another embodiment, the invention is a mobile phone capable of transmitting location information gathered by a Global Positioning System (PGS) receiver to a Public Safety Answering Point (PSAP). The mobile phone houses a transceiver, a GPS receiver, and a TTY/TDD synthesizer in communication with the GPS receiver and the transceiver.
In yet another aspect, the present invention is a computer program capable of reporting a location of a Global Positioning System receiver in a mobile communication network. To accomplish this task, the computer program implements a location determination module, a GPS to TTY/TDD synthesizing module, and a transmission module.


REFERENCES:
patent: 3678391 (1972-07-01), Gough
patent: 4445118 (1984-04-01), Taylor et al.
patent: 5223844 (1993-06-01), Mansell et al.
patent: 5343493 (1994-08-01), Karimullah
patent: 5361399 (1994-11-01), Linquist et al.
patent: 5369783 (1994-11-01), Childress et al.
patent: 5432798 (1995-07-01), Blair
patent: 5717389 (1998-02-01), Mertens et al.
patent: 5799245 (1998-08-01), Ohashi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Manual reporting of location data in a mobile communications... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Manual reporting of location data in a mobile communications..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Manual reporting of location data in a mobile communications... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2474275

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.