Surgery – Diagnostic testing – Flexible catheter guide
Reexamination Certificate
2001-10-02
2004-10-19
Jones, Mary Beth (Department: 3736)
Surgery
Diagnostic testing
Flexible catheter guide
Reexamination Certificate
active
06805676
ABSTRACT:
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority of European Patent Application Serial No. 00610104.2 filed Oct. 3, 2000 filed in the European Patent Office.
FIELD OF THE INVENTION
The present invention relates to medical devices and more particularly to guide wires for use with vascular medical devices and a method for using same.
BACKGROUND OF THE INVENTION
Guide wires are commonly used in the manoeuvering and placement of catheters and the like within a patient's body. Typically a guide wire is first manipulated through the patient's vasculature to a desired location. The catheter, which has a lumen adapted to receive the guide wire, is advanced over the guide wire to follow it to the desired location. One very common guide wire construction has an elongate, flexible helical coil having a proximal end and a distal end, the latter being inserted into the patient.
One guide wire is known from U.S. Pat. No. 4,895,168 to Schneider Inc., which discloses a movable core guidewire assembly that includes a very flexible casing and a core wire to provide rigidity and steerability. The core wire can be straight throughout its length or it can be of a preformed shape. The casing in itself is very flexible and follows any curvature on the core member.
U.S. Pat. No. 5,807,324 to ProCath Corporation discloses a steerable catheter, which comprises an elongated flexible member and a stylet slidably receivable in a lumen of the flexible member. The stylet can have a bent portion which causes a segment of the flexible member in contact with the same to bend. One disadvantage of this steerable catheter is that the catheter is very flexible, so the stylet alone determines the shape of the catheter, and this shape can only be changed by replacing the stylet with a stylet having another shape.
It is an object of the present invention to provide a guide wire with increased manoeuverability.
SUMMARY OF THE INVENTION
In view of this, the guide wire according to the invention is characterized in that the pre-shaped curved portion is flexible, that the tubular member has segments of different transversal stiffnesses, of which at least one first segment has a rigidity causing a straightening of the curved portion when the latter is positioned within the first segment, and of which at least one second segment is flexible so as to be bent when the curved portion of the core member is positioned within the second segment.
By making the core member with at least one portion, in which the core material has been subjected to permanent deformation to form a pre-shaped, curved portion which is flexible so that it can be resiliently straightened out, and by making the tubular member with at least one first segment, which has less transversal flexibility than the curved portion, and at least one second segment, which has higher transversal flexibility than the curved portion on the core member, it is possible for the operator to easily introduce, modify or remove a curvature on the guide wire, simply by effecting displacements of the core member so that the curved portion is moved between locations in the first and the second segments. When the curved portion is moved into the first segment, the curvature of the core member is reduced or straightened out; and when the curved portion is moved into the second segment, the tubular member is curved by the core member. The curvature of the guide wire is thus controlled by the action of the tubular member on the core member. The curvature of the guide wire is automatically adjusted to the local bending flexibility of the guidewire so that more stiff regions will have less curvature. The soft and flexible segments of the guide wire can be operated to curve by positioning the pre-shaped curved portion of the core member at a desired bend in the path, and then move the tubular member so that the soft second segment is positioned abreast of the curved portion. When the core member is retracted into the first segment, the guide wire is straightened. The easy control over the local curvature of the guide wire and the possibility of advancing the core member through the stiff first segment without causing the guide wire to bend, are advantages which facilitate manoeuvering of the guide wire through tortuous paths.
It is preferred that at least the distal segment of the tubular member is a second segment which yields to the curvature of the curved portion of the core member. When the guide wire is advanced along the desired path, the core member is positioned with the curved portion in a first segment located proximal to the distal segment; and when the desired path exhibits a curvature that is difficult to negotiate, the core member can be advanced into the distal (second) segment and set this in a curvature that facilitates further advancement of the guidewire.
In a preferred embodiment, the second segment has a gradually reduced stiffness towards its distal end. When positioned in a vascular system, forces from the vascular walls act on the tubular member and tend to bend it to conform to the vascular path, and as a consequence the forces required from the core member in order to curve the second segment of the tubular member will vary. The gradual change of stiffness of the second segment allows a finely graduated adjustment of the curvature of the guide wire and furthermore it becomes possible to easily balance out the actions from the vascular wall onto the guide wire. If a slightly less curvature is required, the core member can be slightly retracted to a position where the second segment is slightly more stiff, and vice versa.
In order to obtain maximum curvature of the guidewire, the distal segment can have a distal portion in which the tubular member is fully compliant to the curvature of the pre-shaped, curved portion on the core member. It is preferred that this most soft portion is at the distalmost end of the guidewire so that the guide wire can be set with maximum curvature at entry into branched vessels. When the guide wire has been advanced somewhat into the vascular branch, it also acts to support the branch so that a more stiff portion of the guide wire with less curvature can be advanced into the branch without causing damage. In addition there is obtained the well-known advantage of having an atraumatic distal end on the guide wire.
The distal portion of the tubular member can have a length of more than 15 cm which is typically much longer, such as 5 to 40 times longer, than the length of the curved portion of the core member. The tubular member can be moved forwards and backwards and navigated deeper into the vascular system, while the curved portion is kept stationary with respect to the vascular system and controls the curvature of the guide wire at a fixed position, such as at a branch vessel. This is in particular an advantage when the guide wire is to be inserted into vessels in soft and fragile tissues, such as at an intracranial access during diagnostic and/or interventional neurological techniques including delivery of contrast fluids, drugs or a vaso-occlusive agent, treatment of tumors, aneurysms, AVS (arterio-venous-shunts), and so forth.
To further improve a gradual change of shape during advancement of the guide wire, the distal segment can have a proximal portion with a length of at least 6 cm in which the transversal stiffness of the tubular member is higher than in the distal portion and lower than in the first segment.
It is possible according to the present invention to provide the tubular member with more than one soft second segment in order to allow for controlled navigation through at least two consecutive difficult passages.
The tubular member can have at least two of the first segments and at least two of the second segments, one of the first segments being interposed between the second segments. The separation between the two second segments is fully controlled by the length of the first segment.
The inner member can be movable with respect to the tubular member along a longer distance than half
Brinks Hofer Gilson & Lione
Cook Incorporated
Jones Mary Beth
McCrosky David J.
LandOfFree
Manoeuverable guide wire and method of using same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Manoeuverable guide wire and method of using same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Manoeuverable guide wire and method of using same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3290870