Manipulation of microparticles in microfluidic systems

Chemistry: molecular biology and microbiology – Apparatus – Including measuring or testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S287200, C435S287300, C435S288400, C436S518000, C436S531000, C436S532000

Reexamination Certificate

active

06632655

ABSTRACT:

BACKGROUND OF THE INVENTION
The development of microfluidic technologies by the inventors and their co-workers has provided a fundamental paradigm shift in how artificial biological and chemical processes are performed. In particular, the inventors and their co-workers have provided microfluidic systems which dramatically increase throughput for biological and chemical methods, as well as greatly reducing reagent costs for the methods. In these microfluidic systems, small volumes of fluid (e.g., on the order of a few nanoliters to a few microliters) are moved through microchannels (e.g., in glass or polymer microfluidic devices).by electrokinetic or pressure-based mechanisms. Fluids can be mixed, and the results of the mixing experiments determined by monitoring a detectable signal from products of the mixing experiments.
Complete integrated systems with fluid handling, signal detection, sample storage and sample accessing are available. For example, Parce et al. “High Throughput Screening Assay Systems in Microscale Fluidic Devices” WO 98/00231 and Knapp et al. “Closed Loop Biochemical Analyzers” (WO 98/45481; PCT/US98/06723) provide pioneering technology for the integration of microfluidics and sample selection and manipulation. For example, in WO 98/45481, microfluidic apparatus, methods and integrated systems are provided for performing a large number of iterative, successive, or parallel fluid manipulations. For example, integrated sequencing systems, apparatus and methods are provided for sequencing nucleic acids (as well as for many other fluidic operations, e.g., those benefiting from automation of iterative fluid manipulation). This ability to iteratively sequence a large nucleic acid (or a large number of nucleic acids) provides for increased rates of sequencing, as well as lower sequencing reagent costs. Applications to compound screening, enzyme kinetic determination, nucleic acid hybridization kinetics and many other processes are also described by Knapp et al.
As an alternative to microfluidic approaches, small scale array based technologies can also increase throughput of screening, sequencing, and other chemical and biological methods, providing robust chemistries for a variety of screening, sequencing and other applications. Fixed solid-phase arrays of nucleic acids, proteins, and other chemicals have been developed by a number of investigators. For example, U.S. Pat. No. 5,202,231, to Drmanac et al. and, e.g., in Drmanac et al. (1989) Genomics 4:114-128 describe sequencing by hybridization to arrays of oligonucleotides. Many other applications of array-based technologies are commercially available from e.g., Affymetrix, Inc. (Santa Clara, Calif.), Hyseq Technologies, Inc. (Sunnyvale, Calif.). and others. Example applications of array technologies are described e.g., in Fodor (1997) “Genes, Chips and the Human Genome” FASEB Journal. 11:121-121; Fodor (1997) “Massively Parallel Genomics” Science. 7:393-395; Chee et al. (1996) “Accessing Genetic Information with High-Density DNA rays” Science 274:610-614; and Drmanac et al. (1998) “Accurate sequencing by bridization for DNA diagnostics and individual genomics.” Nature Biotechnology 16: 54-58.
The present invention is a pioneering invention in the field of microfluidics and mobile array technologies, coupling the fluid handling capabilities of microfluidic systems with the robust chemistries available through array technologies (e.g., solid phase chemistries) to facilitate laboratory and industrial processes. Many applications and variations will be apparent upon complete review of this disclosure.
SUMMARY OF THE INVENTION
The present invention provides microfluidic arrays. The arrays include particle sets (or “packets”) which can be mobile or fixed in position, e.g., within a microfluidic system. The particle sets can include fixed chemical components or can be modifiable. The arrays are used in a wide variety of assays, as chemical synthesis machines, as nucleic acid or polypeptide sequencing devices, as affinity purification devices, as calibration and marker devices, as molecular capture devices, as molecular switches and in a wide variety of other applications which will be apparent upon further review.
In one implementation, the invention provides microfluidic devices comprising one or more array(s) of particles. The device includes a body structure having a microscale cavity (e.g., microchannel, microchannel network, microwell, microreservoir or combination thereof) disposed within the body structure. Within the microscale cavity, an ordered array of a plurality of sets of particles (each particle set is constituted of similar or identical particle “members” or “types”) constitute the array. The array is optionally mobile (e.g., flowable in a microfluidic system, with flow being in either the same or in a different direction relative to fluid flow) or can be fixed (e.g., having flowable reagents flowed across the system).
The arrays of the invention include a plurality of particle sets. The precise location of the particle sets within the arrays is not critical, and can take many configurations. In one simple embodiment, particle sets abut in channels. For example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 1,000, 10,000, 100,000 or more particle sets can abut in a single channel. Alternatively, non-abutting sets of particles dispersed within a microfluidic device can also be used, e.g., where the spatial location of each set of particles is known or can be determined. Fluidic reagents and particles are optionally flowed through the same or through different microchannels (or other microfluidic structures such as wells or chambers). For example, fluidic reagents are optionally flowed from a first channel into a second channel which includes particle sets of the array.
Particles (alternatively “microparticles”) of the arrays of the invention can be essentially any discrete material which can be flowed through a microscale system. Example particles include beads and biological cells. For example, polymer beads, silica beads, ceramic beads, clay beads, glass beads, magnetic beads, metallic beads, inorganic beads, and organic beads can be used. The particles can have essentially any shape, e.g., spherical, helical, irregular, spheroid, rod-shaped, cone-shaped, disk shaped, cubic, polyhedral or a combination thereof. Particles are optionally coupled to reagents, affinity matrix materials, or the like, e.g., nucleic acid synthesis reagents, peptide synthesis reagents, polymer synthesis reagents, nucleic acids, nucleotides, nucleobases, nucleosides, peptides, amino acids, monomers, cells, biological samples, synthetic molecules, or combinations thereof. Particles optionally serve many purposes within the arrays, including acting as blank particles, dummy particles, calibration particles, sample particles, reagent particles, test particles, and molecular capture particles, e.g., to capture a sample at low concentration. Additionally the particles are used to provide particle retention elements. Particles are sized to pass through selected microchannel regions (or other microscale elements). Accordingly, particles will range in size, depending on the application, e.g., from about 0.1 to about 500 microns in at least one cross-sectional dimension.
In one aspect, the microfluidic system comprises an intersection of at least two microchannels. At least one member of the particle array is transported within a first of the at least two channels to a point proximal to or within the channel intersection. At least one of the reagents is transported through a second of the at least two intersecting microchannels to a point proximal to or within the channel intersection. The at least one member of the particle array and the at least one reagent are contacted proximal to or within the channel intersection.
Methods of sequencing nucleic acids are provided. In the methods, a first set of particles comprising at least one set of nucleic acid templates is provided, e.g., in a first microfluidic channel. A train of reagents (i.e., an order

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Manipulation of microparticles in microfluidic systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Manipulation of microparticles in microfluidic systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Manipulation of microparticles in microfluidic systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3171120

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.