Managing test material in an automated material handling system

Data processing: generic control systems or specific application – Specific application – apparatus or process – Article handling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S121000

Reexamination Certificate

active

06338005

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to automated material handling systems and, more particularly, to systems and methods for managing test material in automated material handling systems.
BACKGROUND OF THE INVENTION
Automated material handling systems are used in a variety of industries to move various materials from one location to a another location. Semiconductor fabrication facilities, in particular, commonly employ automated material handling systems for fabricating integrated circuits on semiconductor wafers.
A conventional semiconductor fabrication plant typically includes multiple fabrication areas or bays interconnected by a path, such as a conveyor belt. Each bay generally includes the requisite fabrication tools (interconnected by a subpath) to process semiconductor wafers for a particular purpose, such as photolithography, chemical-mechanical polishing, or chemical vapor deposition, for example. Material stockers or stocking tools generally lie about the plant and store semiconductor wafers waiting to be processed. The wafers are usually stored in cassettes each of which typically hold up to 25 wafers. Each material stocker typically services two or more bays and can hold hundreds of cassettes.
The semiconductor fabrication plant, including the bays, material stockers and the interconnecting path, typically operates under control of a distributed computer system running a factory management program, such as WorkStream Open sold by Consilium, Inc. In this environment, the automated process specification. Manufacturers commonly employ non-production wafers or test wafers to facilitate the fabrication of production wafers. These test wafers may be used for a number of different purposes. For instance, qualification test wafers may be used by a tool (e.g., a deposition chamber) prior to processing production wafers with the tool to calibrate the tool and/or to ensure the operability of the tool. As another example, dummy wafers may be used to fill slots within a carrier or chamber where a “full” state is required for proper processing.
As a result of the large number of wafers being fabricated and the numerous process steps performed on each wafer, a large number of test wafers and thus a large number of cassettes are typically employed during fabrication. As a facility can only operate with a finite number of cassettes, test cassettes take capacity away from production cassettes, thereby reducing the number of production wafers which may be fabricated over a period of time. Throughput is further diminished as a result of the manner in which the cassettes are occupied. In a typical facility, each cassette typically holds a single type of test wafer, the cassette being designated for a particular procedure (e.g., qualification, particle count, etc.). In addition, on average a typically cassette holds 15 or less test wafers, far less than its capacity. This adds to the number of test cassettes and further contributes to throughput inefficiencies.
Semiconductor manufactures compete in a highly competitive and capital-intensive industry. A state-of-the-art semiconductor fabrication plant typically includes hundreds of different fabrication tools and can cost $1 billion or more. New plants can also become obsolete relatively quickly as the dimensions of semiconductor devices decrease. Consequently, to generate higher revenues, semiconductor manufactures continually seek to increase to the throughput and yield of semiconductor wafers and find systems and techniques which increase either of these parameters to be highly desirable.
SUMMARY OF THE INVENTION
The present invention generally provides techniques for managing test material (e.g., test wafers) in automated material handling systems. These techniques may, for example, significantly reduce the capacity of test cassettes and/or reduce the number of test cassettes needed for a given number of products. This can increase the throughput of material through these systems.
In accordance with an embodiment of the invention, test material is classified into a plurality of classes. A time profile for each class of test material for a production period is determined. The test material is then placed into cassettes based on the determined time profiles for each class.
The above summary of the present invention is not intended to describe each illustrated embodiment or every implementation of the present invention. The figures in the detailed description which follow more particularly exemplify these embodiments.


REFERENCES:
patent: 5751582 (1998-05-01), Saxena et al.
patent: 5975740 (1999-11-01), Lin et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Managing test material in an automated material handling system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Managing test material in an automated material handling system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Managing test material in an automated material handling system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2830928

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.