Electrical computers and digital processing systems: multicomput – Computer network managing – Network resource allocating
Reexamination Certificate
1999-06-17
2002-10-01
Maung, Zarni (Department: 2154)
Electrical computers and digital processing systems: multicomput
Computer network managing
Network resource allocating
C709S223000, C709S224000, C709S225000
Reexamination Certificate
active
06460082
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to techniques for managing resources on distributed computer systems, and more particularly, to a system and method for managing resources for provisioning media services in future Internet utilities environments for the delivery of multimedia content.
2. Discussion of the Prior Art
The next generation of the Internet provides future applications with the opportunity to leverage resources across widely distributed resources via its ability to provide quality of service (QoS), large bandwidth connectivity (e.g., very-high-performance Backbone Network Service or vBNS), differentiated services (diff-serv), and unique addressing (e.g., IPv
6
). To applications, this blend of technologies introduces the notion of virtual proximity, i.e., the logical and apparent proximity of widely distributed resources to applications. For applications to make efficient use of these resources, mechanisms are needed to distribute the resulting uncoordinated application load presented by millions such applications to these resources. However, the task of resource management across widely distributed media servers across the Internet is not yet well understood and has been recognized as an emergent issue in the literature.
At the same time, an emerging set of computer utilities is foreseen. Some examples of these new service utilities are concepts such as Internet TV and radio, to name a few. The nature of a service utility is centered on the engineering of distribution channels. In traditional distribution channels such as the telephone network, control of the distribution is achieved via over-engineering and statistical multiplexing of resources. Until now, several reasons have discouraged over-engineering of resources over the Internet—those being primarily, medium properties at high load (e.g., burstiness and unpredictability) and, the lack of a central administration to enable the over-engineering of end-to-end resources. With the emergence of virtual proximity, a new paradigm is possible in which statistical over-engineering of end-to-end resources is now desirable.
The task of leveraging the increased availability of widely distributed content and resources becomes very important with the proliferation of the next generation of the Internet, e.g., Internet2. There are a number of publications and patents in the area of QoS-driven resource management. Most of the work has been focused on either the network, as described in U.S. Pat. No. 5,388,097 issued Feb. 7, 1995 to Baugher, M. J. et al., and entitled “System and Method for Bandwidth Reservation for Multimedia Traffic in Communication Networks,” and U.S. Pat. No. 5,581,703 issued Dec. 3, 1996 to Baugher, M. J. et al, and entitled “Method and Apparatus for Reserving System Resources to assure Quality of Service”; or, the operating system, such as described in the reference “An Architecture Towards Efficient OS Support for Distributed Multimedia”, Proceedings of IS&T/SPIE Multimedia Computing and Networking Conference '96, San Jose, Calif., January 1996 by David K. Y. Yau and Simon S. Lam. With the proliferation of multimedia services on Internet, it was soon realized that while IP networks were able to provide a simple, best-effort delivery service, the IP protocol is not suited for use with new real-time applications, such as multimedia streaming, Virtual Reality applications, distributed supercomputing. As a result, new network protocols, such as Resource Reservation Setup Protocol (RSVP) (See, e.g., “The Grid: Blueprint for a New Computing Infrastructure,” Edited by Ian Foster and Carl Kesselman, Chapter 19, pp. 379-503, Morgan Kauffman Publishers, 1999); Real Time Transport Protocol (RTP); Real Time Transport Control Protocol (RTCP) and others, were developed (See, e.g., William Stallings, “High-Speed Networks: TCP/IP and ATM Design Principles”, Prentice Hall, 1997; and, I. Busse, B. Deffner, and H. Schulzrinne, “Dynamic QoS Control of Multimedia Applications based on RTP”, Computer Communications, January 1996), enabling applications to request and negotiate network QoS parameters, such as bandwidth and latency. Deployment of those protocols on the current Internet has not been successful, firstly because it required upgrading all the non-RSVP routers and servers system software. Secondly, even if RSVP were deployed on the current Internet, very limited bandwidth and computing resources would still have been the bottleneck for successful deployment of real-time applications. The current Internet was built on the backbone, enabling cross-country communications on relatively unclogged T3 (45 megabit per second). Proliferation of graphic pages, and streaming audio and video applications depleted those resources quite fast. Even worse, the rate of user's population growth is considerably higher than newly build network resources.
The National Science Foundation and MCI Corporation, responding to the emerging needs of Internet community has been building a new network, called the very-high-performance Backbone Network Service (vBNS). This nationwide network also provides a backbone for the two foundations, university-led effort called Internet 2 and by federal research agencies, called New Generation Internet.
The VBNS allows most of the connected institutions to run at 622 million bits per second (OC12). By the year 2000, vBNS is expected to operate at 2.4 gigabits per second (2,400 megabits per second) by the year 2000.
The vBNS system exploits RSVP protocol to support two distinct classes of services: a Reserved Bandwidth Service, i.e. a service with bandwidth commitment, and a traditional best-effort IP service (See, e.g., Chuck Song, Laura Cunningham and Rick Wilder, “Quality of Service Development in the vBNS”, MCI Communications Corporation, provided at the URL http://www.vbns.net/presentations/papers/QoSDev/ieeeqos.htm. Still, resource management at the network layer for vBNS is done separately from operating system layer and in isolation from application needs and availability of the end-resources, such as storage and computing resources.
A new breed of high performance applications such as remote surgery, robotics, tele-instrumentation, automated crisis response, digital libraries of satellite data, distance learning via multimedia supported Web sites, enhanced audio, and video, is emerging. However, to accommodate such high performance applications and their continuous media flows, it is not enough to increase or reserve network capacity. These new applications require end-to-end resource reservation and admission control, followed by co-ordination of distributed functions such as: (a) resource scheduling (e.g., CPU, disk, etc.) at the end-system(s), (b) packet scheduling and flow control in the network, and (c) monitoring of the delivered end-to-end quality of service. It is essential that quality of service is configurable, predictable and maintainable system-wide, including the end-system devices, communications subsystem, and networks. Furthermore, all end-to-end elements of distributed systems architecture must work in unison to achieve the desired application level behavior.
Up do date, there has been considerable effort in the development of end-to-end quality of service support. Among them are Heidelberg QoS Model, developed within HeiProject at IBM's European Networking Center and described in the reference entitled “HeiRAT—Quality of Service Management for Distributed Multimedia Systems”, Multimedia Systems Journal, 1996 by Volg, C., Wolf, L., Herrtwich, R. And H. Wittig; an Extended Integrated Reference Model (XRM), developed by COMET group at Columbia University such as described in the reference entitled “Building Open Programmable Multimedia Networks”, Computer Communications Journal, Vol. 21, No. 8, pp. 758-770, June 1998 by Campbell, A. T., Lazar, A. A., Schulzinne, H. And R. Stadler; OMEGA end-point architecture, developed as the interdisciplinary research effort in the University of Pennsylvania such as de
Lumelsky Leon L.
Manohar Nelson R.
Cameron Douglas W.
El-Hady Nabil
International Business Machines - Corporation
Maung Zarni
Scully Scott Murphy & Presser
LandOfFree
Management of service-oriented resources across... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Management of service-oriented resources across..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Management of service-oriented resources across... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2982160