Man-packable missile weapon system

Aeronautics and astronautics – Missile stabilization or trajectory control – Automatic guidance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C102S216000, C089S001816

Reexamination Certificate

active

06244535

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
The invention described herein may be manufactured and used by or for the government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a portable missile system. More particularly, the present invention is a low cost, light weight, man-packable guided missile useful militarily at the squad level. Most particularly, the missile system provides a soldier carried missile system useful against stationary and/or slow moving targets.
2. Brief Description of the Related Art
Missile weapon systems used in warfighting are generally classified as unguided weapons and guided weapons. Unguided weapons propel a projectile that follows a ballistic trajectory in the direction the weapon is fired. The accuracy of the unguided weapon may be degraded by poor aim, poor range estimates, wind, and the movement of the target. Flight path corrections of the projectile are not possible after the weapon is fired. Unguided weapons tend to be relatively inexpensive, but have a correspondingly low probability of impacting a target. Examples of unguided weapons include bullets, high explosive grenades, and bombs. A single soldier can often carry many rounds of this type of ammunition. Rocket propelled unguided weapons, such as rocket propelled grenades, generally contain an airframe, ordnance having safe and arm, contact fuse, warhead detonator, warhead, rocket motor and rocket motor initiator.
Guided missile weapons have historically been both expensive and heavy in comparison to unguided weapons. The expense of the guided weapons generally limits the weapon's use to defense or attacking high value targets. Examples of high value targets include tactical aircraft, tanks, armor, or structures having command and control functions. When guided weapons are used against trucks, jeeps, machine gun emplacements or other low cost targets, the weapons tend to cost more than the target. Additionally, a guided missile tends to be so heavy that it is tactically inefficient for use by individual soldiers. Cost and size make guided missile systems impractical for squad-level combat operations.
Guided missile systems historically have required a high performance rate, including high “hit” probabilities such as 98% or more. The large launch platform requirements of the weapon, as well as the complexity and cost of the guided missile systems, cause the launching of the guided missile to operationally monopolize significant preparation and launch times of major combat assets, such as aircraft, submarines, land complexes, or ships, when firing the missile. By requiring these significant combat assets to become engrossed in the firing of the guided missile, the reliability of the guided missile becomes paramount.
Guided missiles typically include transparent domes used as covers in the front of the missile to collect reflected or generated energy from a target, enabling the missile to track the target. The dome has a required size to achieve a minimally required total field of regard (TFOR) that includes the entire angle “seeable” by the sensor moving to the limits of the sensor gimbals. The sensor optical system focuses the electromagnetic energy received through the transparent dome in a manner similar to the functions of the lenses on a 35 millimeter photographic camera. The focal plane array within electro-optical systems receives the focused energy from the sensor optical system and converts the energy into an analog voltage that is eventually viewed as an image, similar to a television image. This is accomplished by the focal plane array clock drive and readout electronics controlling the focal plane array and converting the voltage into digital data that contained the image of the target. The gimbal system supports the sensor in a manner to provide vibration isolation and stabilization, and an additional look angle to the focal plane array. The additional look angle allows the system to center the target in the focal plane array's field of view for ease of tracking, enabling the sensor to track and hit moving targets. Motion sensors measure the position, rate, and accelerations of the missile environment, with the measurement used by a guidance control system to determine the true movement of the target and compensate for the target movement in the flight path of the missile to allow the missile to hit the target.
In view of the foregoing, there is a need for a man-packable readily replaceable guided missile system. The present invention addresses this need.
SUMMARY OF THE INVENTION
The present invention includes a low-cost, lightweight, man-packable missile, comprising a guidance system having an aerocontrol section capable of altering the flight path of the missile to a target, a computer hardware package and algorithm capable of adjusting an aerocontrol section in relation to measured values, a strapped-down acquisition and tracking sensor electrically connected to the computer hardware package for processing an algorithm, the sensor capable of providing a measured value to the computer hardware package contact-actuated ordinance section; and, a solid-propellant rocket motor of sufficient power to project the missile at a speed and over a distance that enables the guidance system.
The present invention also includes the above described man-packable missile in a man-packable missile system.
Additionally, the present invention includes a method of deploying a man-packable missile system comprising the steps of loading into a launcher a man-packable missile comprising a guidance system having an aerocontrol section capable of altering the flight path of the missile to a target, and a computer hardware package for processing an algorithm capable of adjusting an aerocontrol section in relation to measured values, a strapped-down acquisition and tracking sensor electrically connected to the computer hardware package, the sensor capable of providing a measured value to the computer hardware package and algorithm, a contact-actuated ordinance section, and, a solid-propellant rocket motor of sufficient power to project the missile at a speed and over a distance that enables the guidance system; acquiring a target wherein the sensor fixes on the target; and, firing the missile wherein the rocket motor propels the missile in the direction of the target.


REFERENCES:
patent: 3945588 (1976-03-01), Maglio, Jr.
patent: 4938434 (1990-07-01), Menasha
patent: 5129604 (1992-07-01), Bagley
patent: 5211356 (1993-05-01), McWilliams
patent: 5857644 (1999-01-01), Kusters
patent: 5964432 (1999-10-01), Obkircher
patent: 5644909 (1981-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Man-packable missile weapon system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Man-packable missile weapon system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Man-packable missile weapon system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2496013

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.