Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid
Reexamination Certificate
1998-04-14
2001-07-10
Houtteman, Scott W. (Department: 1656)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving nucleic acid
C536S024310, C536S023500
Reexamination Certificate
active
06258535
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates to human telomerase, a ribonucleoprotein enzyme involved in human telomere DNA synthesis. The invention provides methods and compositions relating to the fields of molecular biology, chemistry, pharmacology, and medical and diagnostic technology.
2. Description of Related Disclosures
The DNA at the ends or telomeres of the chromosomes of eukaryotes usually consists of tandemly repeated simple sequences. Telomerase is a ribonucleoprotein enzyme that synthesizes one strand of the telomeric DNA using as a template a sequence contained within the RNA component of the enzyme. See Blackburn, 1992,
Annu. Rev. Biochem.
61:113-129, incorporated herein by reference.
The RNA component of human telomerase has not been reported in the scientific literature to date, although human telomerase is known to synthesize telomeric repeat units with the sequence 5′-TTAGGG-3′. See Morin, 1989,
Cell
59:521-529, and Morin, 1991,
Nature
353:454-456, incorporated herein by reference. This knowledge has not been sufficient to enable the isolation and identification of the remainder of the nucleotide sequence of the RNA component of human telomerase. The RNA component of the telomerase enzymes of
Saccharomyces cerevisiae
, certain species of Tetrahymena, as well as that of other ciliates, such as Euplotes and Glaucoma, has been sequenced and reported in the scientific literature. See Singer and Gottschling, Oct. 21, 1994,
Science
266:404-409; Lingner et al., 1994,
Genes
&
Development
8:1984-1988; Greider and Blackburn, 1989,
Nature
337:331-337; Romero and Blackburn, 1991,
Cell
67:343-353; and Shippen-Lentz and Blackburn, 1990,
Science
247:546-552, each of which is incorporated herein by reference. The telomerase enzymes of these ciliates synthesize telomeric repeat units distinct from that in humans.
There is a great need for more information about human telomerase. Despite the seemingly simple nature of the repeat units of telomeric DNA, scientists have long known that telomeres have an important biological role in maintaining chromosome structure and function. More recently, scientists have speculated that loss of telomeric DNA may act as a trigger of cellular senescence and aging and that regulation of telomerase may have important biological implications. See Harley, 1991,
Mutation Research
256:271-282, incorporated herein by reference.
Methods for detecting telomerase activity, as well as for identifying compounds that regulate or affect telomerase activity, together with methods for therapy and diagnosis of cellular senescence and immortalization by controlling telomere length and telomerase activity, have also been described. See PCT patent publication No. 93/23572, published Nov. 25, 1993, and U.S. patent application Ser. No. 08/315,216 (inventors Michael D. West, Jerry Shay, and Woodring Wright), filed Sep. 28, 1994; Ser. No. 08/315,214 (inventors Nam Woo Kim, Scott Weinrich, and Calvin B. Harley), filed Sep. 28, 1994; Ser. No. 08/288,501, filed Aug. 10, 1994; Ser. No. 08/014,838, filed Feb. 8, 1993; Ser. Nos. 08/153,051 and 08/151,477, each filed Nov. 12, 1993; Ser. No. 08/060,952, filed May 13, 1993; Ser. No. 08/038,766, filed Mar. 24, 1993; and Ser. No. 07/882,438, filed May 13, 1992, each of which is incorporated herein by reference.
Significant improvements to and new opportunities for telomerase-mediated therapies and telomerase assays and screening methods could be realized if nucleic acid comprising the RNA component and/or encoding the protein components of telomerase were available in pure or isolatable form and the nucleotide sequences of such nucleic acids were known. The present invention meets these and other needs and provides such improvements and opportunities.
SUMMARY OF THE INVENTION
In a first aspect, the present invention provides the RNA component of, as well as the gene for the RNA component of, human telomerase in substantially pure form, as well as nucleic acids comprising all or at least a useful portion of the nucleotide sequence of the RNA component of human telomerase. The present invention also provides RNA component nucleic acids from other species, which nucleic acids share substantial homology with the RNA component of human telomerase, including but not limited to, the RNA components of mammals, such as primates. Other useful nucleic acids of the invention include nucleic acids with sequences complementary to the RNA component; nucleic acids with sequences related to but distinct from nucleotide sequences of the RNA component and which interact with the RNA component or the gene for the RNA component or the protein components of human telomerase in a useful way; and nucleic acids that do not share significant sequence homology or complementarity to the RNA component or the gene for the RNA component but act on the RNA component in a desired and useful way. As described more fully below, the nucleic acids of the invention include both DNA and RNA molecules and modified analogues of either and serve a variety of useful purposes.
Thus, one type of useful nucleic acid of the invention is an antisense oligonucleotide, a triple helix-forming oligonucleotide, or other oligonucleotide that can be used in vivo or in vitro to inhibit the activity of human telomerase. Such oligonucleotides can block telomerase activity in a number of ways, including by preventing transcription of the telomerase gene (for instance, by triple helix formation) or by binding to the RNA component of telomerase in a manner that prevents a functional ribonucleoprotein telomerase from assembling or prevents the RNA component, once assembled into the telomerase enzyme complex, from serving as a template for telomeric DNA synthesis. Typically, and depending on mode of action, these oligonucleotides of the invention comprise a specific sequence of from about 10 to about 25 to 200 or more nucleotides that is either identical or complementary to a specific sequence of nucleotides in the RNA component of telomerase or the gene for the RNA component of telomerase.
Another type of useful nucleic acid of the invention is a ribozyme able to cleave specifically the RNA component of human telomerase, rendering the enzyme inactive. Yet another type of useful nucleic acid of the invention is a probe or primer that binds specifically to the RNA component of human telomerase and so can be used, e.g., to detect the presence of telomerase in a sample. Finally, useful nucleic acids of the invention include recombinant expression plasmids for producing the nucleic acids of the invention. One especially useful type of such a plasmid is a plasmid used for human gene therapy. Useful plasmids of the invention for human gene therapy come in a variety of types, including not only those that encode antisense oligonucleotides or ribozymes but also those that drive expression of the RNA component of human telomerase or a deleted or otherwise altered (mutated) version of the RNA component of human (or other species with RNA component sequences substantially homologous to the human RNA component) telomerase or the gene for the same.
In a second aspect, the invention provides methods for treating a condition associated with the telomerase activity within a cell or group of cells by contacting the cell(s) with a therapeutically effective amount of an agent that alters telomerase activity in that cell. Such agents include the telomerase RNA component-encoding nucleic acids, triple helix-froming oligonucleotides, antisense oligonucleotides, ribozymes, and plasmids for human gene therapy described above. In a related aspect, the invention provides pharmaceutical compositions comprising these therapeutic agents together with a pharmaceutically acceptable carrier or salt.
In a third aspect, the invention provides diagnostic methods for determining the level, amount, or presence of the RNA component of human telomerase, telomerase, or telomerase activity in a cell, cell population, or tissue sample, or an extract of any of t
Andrews William H.
Feng Junli
Funk Walter
Villeponteau Bryant
Earp David
Geron Corporation
Houtteman Scott W.
Storella John
Townsend and Townsend / and Crew LLP
LandOfFree
Mammalian telomerase does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Mammalian telomerase, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mammalian telomerase will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2528878