Malic acid and oxalacetic acid derivatives

Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acid esters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C560S126000, C560S127000, C562S470000, C562S509000

Reexamination Certificate

active

06489504

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to malic acid and oxalacetic acid derivatives which are useful as materials for pharmaceuticals, agricultural chemicals, and other fine chemicals and functional materials, and as optical resolution agents. Specifically, the invention relates to novel malic acid and oxalacetic acid derivatives having an alicyclic group bonded to a carbon atom at the 3-position.
2. Description of the Related Art
A compound having an alicyclic carbon ring such as adamantane ring particularly becomes a focus of attention in recent years, since it has completely distinguishable physical characteristics such as low toxicity and high transparency from those of a compound having an aromatic carbon ring such as benzene ring, although both have a ring.
Separately, malic acid and oxalacetic acid derivatives having a variety of substituents on a carbon atom at the 3-position, where a carbon atom to which a hydroxyl group or oxo group is bound is defined as the 2-position, are synthetically prepared and are used as fine chemicals and functional materials, or raw materials therefor. However, neither malic acid derivative having an alicyclic group bond to a carbon atom at the 3-position nor oxalacetic acid derivative having a bridged cyclic ring or a monocyclic alicyclic ring having eight or more members at the 3-position has been known.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a novel malic acid derivative having an alicyclic group bonded to a carbon atom at the 3-position and a novel oxalacetic acid derivative having a specific alicyclic group bonded to a carbon atom at the 3-position.
After intensive investigations to achieve the above objects, the present inventors found that a novel malic acid or oxalacetic acid derivative having an alicyclic group bound at the 3-position can be easily and efficiently produced by allowing an alicyclic hydrocarbon to react with maleic acid or fumaric acid derivative in the presence of the oxygen by the catalysis of an imide compound having a specific structure. The present invention has been accomplished based on these findings.
Specifically, the present invention provides a malic acid or oxalacetic acid derivative which is represented by the following formula (1):
wherein ring Z is an alicyclic carbon ring; each of R
a
and R
b
is independently a hydrogen atom, a metal atom, or an organic group; and Y is a hydroxyl group or an oxygen atom, where ring Z is a bridged carbon ring or a monocyclic carbon ring having eight or more members when Y is an oxygen atom.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the formula (1), Y is a hydroxyl group or an oxygen atom, and the bond between Y and the carbon atom is a single bond or double bond. When Y is a hydroxyl group, the compound represented by the formula (1) is malic acid (i.e., 2-hydroxysuccinic acid) or a derivative thereof. When Y is an oxygen atom, the compound represented by the formula (1) is oxalacetic acid (i.e., 2-oxosuccinic acid) or a derivative thereof.
Ring Z is an alicyclic carbon ring. Such alicyclic carbon rings include, but are not limited to, cyclopropane, cyclobutane, cyclopentane, cyclopentene, cyclohexane, cyclohexene, cycloheptane, cyclooctane, cyclooctene, cyclononane, cyclodecane, cyclododecane, cyclotetradecane, cyclohexadecane, and other monocyclic alicyclic carbon rings (cycloalkane rings and cycloalkene rings) each having about 3 to 30 members (preferably about 3 to 20 members, and more preferably about 5 to 20 members); perhydroindene ring, decalin ring, perhydrofluorene ring, perhydroanthracene ring, perhydrophenanthrene ring, perhydroacenaphthene ring, perhydrophenalene ring, pinane ring, bornane ring, norbornane ring, norbornene ring, norpinane ring, adamantane ring, tricyclo[5.2.1.0
2,6
]decane ring, tetracyclo[4.4.0.1
2,5
.1
7,10
]dodecane ring, and other bridged carbon rings each having from two to six (preferably from two to four) rings. When ring Z is a bridged carbon ring, ring Z is bonded to the carbon atom indicated in the formula at the bridgehead position in many cases.
When Y is an oxygen atom, i.e., the compound represented by the formula (1) is an oxalacetic acid derivative, ring Z is a bridged carbon ring or a monocyclic carbon ring having eight or more members (e.g., about 8 to 30 members, and preferably about 8 to 20 members). Even when Y is a hydroxyl group, i.e., the compound represented by the formula (1) is a malic acid derivative, ring Z is preferably a bridged carbon ring or monocyclic carbon ring having eight or more members (e.g., about 8 to 30 members, and preferably about 8 to 20 members). Such a bridged carbon ring or a monocyclic carbon ring having eight or more members can impart preferred characteristics due to its rigidity and bulkiness to the compound.
The alicyclic carbon ring may have at least one substituent. Such substituents include, but are not limited to, halogen atoms (fluorine, chlorine, bromine, and iodine atoms), oxo group, hydroxyl group which may be protected with a protective group, a hydroxymethyl group which may be protected with a protective group, amino group which may be protected with a protective group, carboxyl group which may be protected with a protective group, substituted oxycarbonyl groups, substituted or unsubstituted carbamoyl groups, nitro group, acyl groups, cyano group, alkyl groups (e.g., methyl, ethyl, and other C
1
-C
4
alkyl groups), cycloalkyl groups, aryl groups (e.g., phenyl and naphthyl groups), and heterocyclic groups. As the protective groups, conventional protective groups in the field of organic synthesis can be used.
The metal atom in R
a
and R
b
includes, but is not limited to, atoms of lithium, sodium, potassium, and other alkali metals; atoms of magnesium, calcium, barium, and other alkaline earth metals; and atoms of zinc and other transition metals.
The organic group in R
a
and R
b
includes, but is not limited to, hydrocarbon groups and heterocyclic groups. Such hydrocarbon groups include, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, hexyl, allyl, and other straight-chain or branched aliphatic hydrocarbon groups (alkyl groups, alkenyl groups, and alkynyl groups) each having about 1 to 20 (preferably about 1 to 10, and more preferably about 1 to 6) carbon atoms; cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, cyclooctyl, cyclodecyl, cyclododecyl, and other alicyclic hydrocarbon groups (e.g., cycloalkyl groups, cycloalkenyl groups, and bridged cyclic hydrocarbon groups) each having about 3 to 20 (preferably about 3 to 15) carbon atoms; phenyl, naphthyl, and other aromatic hydrocarbon groups each having about 6 to 14 carbon atoms. Heterocycles corresponding to the heterocyclic groups include, but are not limited to, furan ring, thiophene ring, pyridine ring, pyrrole ring, and other heterocycles each having an oxygen atom, sulfur atom or nitrogen atom as a hetero atom. Each of these hydrocarbon groups and heterocyclic groups may have at least one substituent (e.g., substituents which the alicyclic hydrocarbon group may have).
Typical examples of the compounds of the formula (1) in which Y is a hydroxyl group are, wherein the junction position of ring Z is defined as the 3-position, 3-cyclohexylmalic acid, 3-cyclooctylmalic acid, 3-cyclodecylmalic acid, 3-cyclododecylmalic acid, 3-cyclotetradecylmalic acid, and other 3-substituted malic acids in which ring Z is a monocyclic carbon ring, esters of these compounds (e.g., dimethyl esters, monomethyl esters, diethyl esters, monoethyl esters, diisopropyl esters, di-t-butyl esters, diallyl esters, and diphenyl esters), and salts of these compounds (e.g., sodium salts, potassium salts, and other alkali metal salts; and calcium salts, and other alkaline earth metal salts); 3-(1-adamantyl)malic acid, 3-(3,5-dimethyladamant-1-yl)malic acid, 3-(1-norbornyl)malic acid, 3-(tricyclo[5.2.1.0
2,6
]decan-1-yl)malic acid, 3-(4a-decalinyl)malic acid, 3-(tetracyclo&ls

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Malic acid and oxalacetic acid derivatives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Malic acid and oxalacetic acid derivatives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Malic acid and oxalacetic acid derivatives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2952882

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.