Making galvanized steel with excellent darkening resistance

Metal treatment – Process of modifying or maintaining internal physical... – Processes of coating utilizing a reactive composition which...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

148262, C23C 2273, C23C 2236

Patent

active

054725224

DESCRIPTION:

BRIEF SUMMARY
TECHNICAL FIELD

The present invention concerns a method for surface-treating galvanized steel, especially in sheet form. More specifically, the present invention concerns a method for forming a chromate film which is resistant to darkening (i.e., resistant to the production of black rust) on the surface of galvanized steel. As far as the present specification is concerned, the expression "galvanized steel" signifies steel coated with zinc or a zinc alloy by electroplating or melt-coating.


BACKGROUND ART

As far as methods for preventing the corrosion of iron steels are concerned, galvanizing, which is based on the principle of sacrificial corrosion, is the most effective and economical method. In response to the demand to increase the added values of steel sheets, nearly 90% of thin steel sheets (especially surface-treated steel sheets, with a production of 15 million tons) are accounted for by galvanized steel sheets, and they are used in diverse fields (e.g., building materials, automobiles, household electrical appliances, etc.).
The sacrificial corrosion mechanism of zinc can be expressed as follows: a galvanic cell is formed in a state where two metals (i.e., zinc and iron) are contacted; zinc, which is the baser of the two metals, serves as an anode, whereas iron serves as a cathode; as a result, anodic dissolution of the iron due to the formation of a local cell, which is observed in a case where iron is used alone, is inhibited, and accordingly, the corrosion of the iron or steel is prevented. The corrosion-preventive function is exhausted upon the disappearance of the zinc contacted with the iron, and therefore, it is necessary to inhibit the corrosion of the zinc layer in order to sustain the protective function and effects over an extended period of time. Galvanized sheets are chromate-treated as a mechanism for serving this function.
This chromate treatment corrosion-preventive method, however, has the following problem. When a galvanized steel sheet is chromate-treated, the formation of white rust on the zinc is significantly inhibited, but when the sheet is stored or transported, black rust (also referred to as "darkening") is observed, and the physical appearance of the steel sheet is inferior when it is actually used. This phenomenon also depends on the surface state of the galvanized steel sheet. It has been determined that this tendency is especially noticeable in a case where a skin pass treatment is performed after treating or in the case of a steel sheet plated with a zinc/aluminum alloy containing several percent of aluminum.
As is noted in Japanese Patent Disclosure number Tokkai Sho 59[1984]-177381 (Kokai Hei 3[1991]-49982), a method wherein extremely small quantities of metals are chemically deposited by means of a preliminary treatment in the presence of an aqueous solution containing nickel or cobalt ions prior to a chromate treatment (referred to as the nickel or cobalt "flash treatment") seems promising for preventing the darkening after the chromate treatment.
As a similar technique, a method wherein a galvanized steel sheet is preliminarily treated with an iron ion-containing aqueous solution prior to a chromate treatment has been proposed in Japanese Patent Disclosures Tokkai Sho 62[1987]-20881 and Sho 62[1987]-17183.
The form of the metal thereby deposited may be an elemental metal or its oxide. There are no established theories, however, regarding the mechanism by which this flash treatment prevents the darkening of the galvanized steel sheet as a result of the chromate treatment.
It is mentioned in Proceedings from the 60th Metal Surface Technology Society Lecture Convention, pp. 150-151 that flashed metals are preferentially deposited in zinc crystal grain boundaries, and a chromium-containing compound which has been adhered as a result of a subsequent coat-type chromate treatment is extensively distributed in the grain boundaries, as in the case of the flashed meals. Thus, it may be assumed that the chromium-containing compound is adsorbed on and fixed to the flashed

REFERENCES:
patent: 5152849 (1992-10-01), Bittner

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Making galvanized steel with excellent darkening resistance does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Making galvanized steel with excellent darkening resistance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Making galvanized steel with excellent darkening resistance will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1371124

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.