Maize aquaporins and uses thereof

Multicellular living organisms and unmodified parts thereof and – Method of introducing a polynucleotide molecule into or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C800S286000, C800S295000, C800S290000, C800S298000, C800S320000, C800S320100, C800S320200, C800S320300, C800S322000, C800S306000, C800S312000, C800S314000, C435S069100, C435S468000, C435S320100, C435S419000, C536S023100, C536S023600, C536S024100, C536S024500

Reexamination Certificate

active

06313375

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to plant molecular biology. More specifically, it relates to nucleic acids and methods for modulating their expression in plants.
BACKGROUND OF THE INVENTION
Aquaporins are water channel proteins present in the membranes of plants and animal cells and belong to a family of proteins known as the MIP (membrane intrinsic protein) family. Maurel et al,
J. Exp. Botany
, 48: Special Issue, 421-430, 1997. These proteins exhibit a typical structure of 24-28 kDa with six predicted transmembrane spanning domains and some perfectly conserved residues including an Asn-Pro-Ala motif, in both the first intra-cytoplasmic and third extracytoplasmic loops of the protein. Reizer et al.,
Critical Reviews in Biochemistry and Molecular Biology
, 28: 235-57, 1993. Within the plant cell, aquaporins are found in both the vacuolar and plasma membranes.
Aquaporins are involved in: cell expansion and cell volume regulation, transcellular water flow, adjustments to water deficit, regulated water delivery, and adaptation to cold stress by osmotic adjustments. Some aquaporins have been shown to be desiccation and salt stress induced in plants. Yamaguchi-Shinozaki et al.,
Plant Cell Physiol
., 33: 217-224, 1992; Guerrero et al.,
Plant Mol. Biol
., 15: 11-26, 1990. Kaldenhoff et al., (
Plant J
., 7: 87-95, (1995)) showed that the down-regulation of aquaporins in Arabidopsis plants that express antisense constructs results in a slower swelling and bursting of the isolated protoplasts.
Tonoplast Intrinsic Proteins (TIP) are MIP homologs that have been identified in seeds from a wide range of monocot and dicot species. Johnson et al.,
Plant Physiology
, 91: 1006-13, 1989. Full or partial sequences have been determined in bean (Johnson et al.,
Plant Cell
, 2: 525-32, 1990),
Arabidopsis thaliana
(Hofte et al.,
Plant Physiology
, 99: 561-70, 1992), pumpkin (Cucurbita sp.) (Inoue et al.,
Plant Molecular Biology
, 28: 1089-1101, 1995), and Norway spruce (
Picea abies
) (Oliviusson and Hakman,
Physiologia Plantarum
, 95: 288-95, 1995) and confirm the high conservation of these proteins in seeds. Full or partial sequences of more than 20 MIP homologs in Arabidopsis are reported to be available in the sequence data banks. Maurel et al.,
J. Exp. Botany
, 48: Special Issue, 421-430, 1997.
An important parameter of crop plants is water use efficiency. Plants able to make better use of scarce water resources promise to make agriculture more sustainable in many areas of the U.S. and the world. Accordingly, what is needed in the art are plants which are desiccation-, salt-, cold-, or drought-tolerant. The present invention provides this and other advantages.
SUMMARY OF THE INVENTION
Generally, it is the object of the present invention to provide nucleic acids and proteins relating to maize aquaporins. It is an object of the present invention to provide: 1) antigenic fragments of the proteins of the present invention; 2) transgenic plants comprising the nucleic acids of the present invention; 3) methods for modulating, in a transgenic plant, the expression of the nucleic acids of the present invention.
Therefore, in one aspect, the present invention relates to an isolated nucleic acid comprising a member selected from the group consisting of (a) a polynucleotide which encodes a polypeptide of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46 and 48; (b) a polynucleotide comprising at least 25 contiguous bases of SEQ ID NOS; (c) a polynucleotide encoding a maize aquaporin; (d) a polynucleotide having at least 80% sequence identity to SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 38, 39, 41, 43, 45, and 47; wherein the % sequence identity is based on the entire sequence and is determined by GAP analysis using Gap Weight of 50 and Length Weight of 3; (e) a polynucleotide comprising at least 25 nucleotides in length which hybridizes under stringent conditions to a polynucleotide having the sequence set forth in SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 38, 39, 41, 43, 45, and 47; (g) a polynucleotide having the sequence set forth in SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 38, 39, 41, 43, 45, and 47; (h) a polynucleotide complementary to a polynucleotide of (a) through (g). The isolated nucleic acid can be DNA.
In another aspect, the present invention relates to recombinant expression cassettes, comprising a nucleic acid as described, supra, operably linked to a promoter. In some embodiments, the nucleic acid is operably linked in antisense orientation to the promoter.
In another aspect, the present invention is directed to a host cell transfected with the recombinant expression cassette as described, supra. In some embodiments, the host cell is a corn, soybean, wheat, rice, alfalfa, barley, millet, sunflower, sorghum, canola or cotton cell.
In a further aspect, the present invention relates to an isolated protein comprising a polypeptide having 10 contiguous amino acids encoded by the isolated nucleic acid referred to, supra.
In another aspect, the present invention relates to an isolated nucleic acid comprising a polynucleotide of at least 25 contiguous bases which selectively hybridizes under stringent conditions to a nucleic acid of the present invention, or a complement thereof. In some embodiments, the isolated nucleic acid is operably linked to a promoter.
In yet another aspect, the present invention relates to an isolated nucleic acid comprising a polynucleotide, the polynucleotide having a specified sequence identity to an identical length of a nucleic acid of the present invention or a complement thereof.
In another aspect, the present invention relates to an isolated nucleic acid adducted to a second nucleic acid sequences encoding a DNA-binding domain.
In an additional aspect, the present invention is directed to an isolated nucleic acid comprising a polynucleotide encoding a polypeptide wherein: (a) a polypeptide comprising at least 10 contiguous amino acids of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46 and 48; (b) a polypeptide which is a maize aquaporin; (c) a polypeptide having at least 60% sequence similarity to SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46 and 48; wherein the % sequence similarity is based on the entire sequence and is determined by GAP analysis using Gap Weight of 12 and Length Weight of 4; (d) a polypeptide encoded by a nucleic acid of claim 1; (e) a polypeptide encoded by a nucleic acid of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 38, 39, 41, 43, 45, and 47.
In yet another aspect, the present invention relates to a transgenic plant comprising a recombinant expression cassette comprising a plant promoter operably linked to any of the isolated nucleic acids of the present invention. In some embodiments, the transgenic plant is
Zea mays
. The present invention also provides transgenic seed from the transgenic plant.
In a further aspect, the present invention relates to a method of modulating expression of the genes encoding the proteins of the present invention in a plant, comprising the steps of (a) transforming a plant cell with the expression cassette of claim 4; (b) growing the plant cell under plant growing conditions to produce a regenerated plant; and (c) inducing expression of the polynucleotide for a time sufficient to modulate aquaporin in the plant. Expression of the genes encoding the proteins of the present invention can be increased or decreased relative to a non-transformed control plant.
Definitions
Units, prefixes, and symbols may be denoted in their SI accepted form. Unless otherwise indicated, nucleic acids are written left to right in 5′ to 3′ orientation; amino acid sequences are written left to right in amino to carboxy orientation, respectively. Numeric ranges are inclusive of th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Maize aquaporins and uses thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Maize aquaporins and uses thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Maize aquaporins and uses thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2601815

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.