Elevator – industrial lift truck – or stationary lift for vehicle – With monitoring – signalling – and indicating means
Reexamination Certificate
2000-07-07
2001-12-18
Salata, Jonathan (Department: 2837)
Elevator, industrial lift truck, or stationary lift for vehicle
With monitoring, signalling, and indicating means
C702S184000
Reexamination Certificate
active
06330935
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to an elevator system having a maintenance system and a method for maintaining an elevator system.
BACKGROUND OF THE INVENTION
Until now, for the maintenance of an elevator system, there have been set maintenance intervals, causing more or less extensive maintenance service to be performed than was required. This led to the situation where elevator components needing less maintenance would be serviced too often, because the service intervals were oriented to meet the requirements to the maintenance-intensive hardware components of the elevator. Thereby, unnecessary maintenance was undertaken, which then increased the maintenance cost of the elevator system.
SUMMARY OF THE INVENTION
It is therefore the object of the present invention to create an elevator system and a method for maintaining an elevator system, so that the maintenance is tailored for each of the individual hardware components of the elevator.
This task is performed through an elevator system according to claim
1
and a method for maintaining an elevator system according to claim
8
. Advantageous improvements of the invention are subject matter to the appropriate dependent claims.
According to the invention, hardware components for the definition of the maintenance intervals are sectioned into groups, wherein either the hardware components have an approximate identical maintenance need or comprise similar spatial and/or technically connected hardware components. For these different groups, different maintenance intervals are stored in a storage area of the maintenance system as maintenance data, which can be accessed through an input or a remote input device. The maintenance system can be a part of the elevator control or it can be separate. It is also possible to compound the maintenance systems of plural elevators arranged in a group. The hardware components of the elevator combined in one of the maintenance groups are hereinafter referred to as maintenance modules. Through an elevator and client specific definition of these modules, the wishes of the client can be fulfilled in that through the hardware components of the elevator system a preset value of the environment can be calculated, so that an optimized individual client and elevator specific maintenance with minimal maintenance expenditure is possible.
When, for example, the modules are defined in such a manner, so that their respective hardware components are combined with relatively similar sized maintenance requirements, therefore the maintenance-intensive and greater wear-and-tear hardware components of the elevator are more often maintained than the hardware components in the modules with lower maintenance needs.
It is self-evident that the hardware components of the elevator and the maintenance modules can also be selected through other criteria. One criteria can be, for example, a spatial layout. Through so-called defined maintenance modules, an organized maintenance schedule is possible which then leads to lower maintenance costs. In this implication, for example, a standard group of hardware components, which need to be examined, can be combined into one base module. Such a maintenance module can combine all of the maintenance tasks, which include for example, a visual inspection of the elevator cabin, the elevator shaft, the control cabinet, and the cable and the towing rope. This base module can futhermore be utilized for examining the acceleration tolerances and for acquisition of the subjective status of the elevator system. One base module, for example, can be a root maintenance module that has a two-month interval stored in a storage area of the maintenance system. This module would store the hardware components and the maintenance-related work of the hardware components, combined with the time point for performing the maintenance work.
In the case of the base module, there could be for example a two-month maintenance interval, and other maintenance modules could then be overlaid. Conceivably, there could be a drive module, i.e., a maintenance group that encompasses all greasing, cleaning, and examining work on hardware components of the drive. Furthermore, a door module that encompasses all of the door components and the appropriate maintenance work. Further conceivable would be for example a shaft module which encompasses all hardware components in the shaft, e.g., guide rails, cable, switches, drive head guide, counterweight guide, catching device, cable tension and the buffer, and also the associated maintenance work, greasing, cleaning and checking. A further maintenance module could be an electric module, which would focus on the cleaning and checking of all the electrodes and connections in the elevator. While the base module in the above example can be carried out in two-month intervals, the other maintenance modules such as the drive module, door module, shaft module or the electrical module can be carried out in larger time intervals. The drive module can, for example, be examined after every third base module; the door module with every fourth base module interval; and the shaft module with every fifth base module interval.
After the completion of every maintenance module, through an input device or through a remote input, the corresponding maintenance module is reseted or acknowledged. If that does not happen, the maintenance system executes an alarm signal after the predetermined maintenance time point is transgressed. The alarm signal can, for example, be directed through a remote guide and delivered into a central maintenance center.
It is understandable that predetermined maintenance intervals are not set. They can be varied into a preferable completion form of the invention through sensors, which check the condition or the settings of the different hardware components. In this manner, there can be many hardware components of the elevator that have sensors, which supply information about the settings and/or the wear-and-tear of the hardware components to the control and/or the maintenance system. These signals can be used to move a maintenance interval in a group either further forward or further backward, depending on the individual status of the time dependent hardware components in the group, respectively in the module. Understandably, the date for the completion of one of the maintenance modules can also be shifted through a manual input, when for example, an unplanned maintenance is performed on certain hardware components.
When maintenance time points are shifted because of sensor data, the maintenance system combines the time points from adjacent maintenance modules together, so that there are no unnecessary driving costs because of maintenance modules which have relatively dense time points.
The control and/or maintenance system has a clock so that it remains in contact with a comparator to generate a time check between the actual time and the time point in which the maintenance module needs to be performed, and by the transgression of an alarm signal.
Through a remote input device, the time points for the maintenance modules can be coordinated with further maintenance monitoring provisions, for instance, the examining work of a technical examining society or union.
When, for example, a hardware component is replaced during repair work, this is inputted into a maintenance-friendly execution form of the invention through an input device in the maintenance system, which thereupon takes out that hardware component out of that or the next following maintenance module, so that unnecessary maintenance work is hindered.
Next to pure maintenance modules, the hardware components can be combined in connection with the required cleaning work in groups, the so-called cleaning modules. These cleaning modules can be completed together with the maintenance modules at predetermined time points, respectively, time intervals in the storage capacity of the maintenance system, respectively, the elevator controls.
Further, still other objects of the present invention will become mo
Kone Corporation
Salata Jonathan
LandOfFree
Maintenance method for an elevator installation and elevator... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Maintenance method for an elevator installation and elevator..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Maintenance method for an elevator installation and elevator... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2583740